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ABSTRACT. We show how estimates on the Hausdorff dimensions of the Hoélder
singularities of a function can be derived from the properties of its expansion
on an orthonormal wavelet basis. The validity of the multifractal formalism
is examined and results concerning the genericity of multifractality in a given
function space are deduced.

Multifractal analysis is a recent field, introduced in the context of turbulence in
the mid 80s; its purpose 1s to analyze the pointwise Holder regularity of functions,
and to understand how this regularity fluctuates from point to point. One tries
to determine the spectrum of singularities of the function f studied: It is a novel
function which associates to each Holder exponent H the dimension of the sets of
points where f has this given pointwise regularity.

We will give a detailed account of the interaction between wavelet analysis and
multifractal analysis. This interaction was made possible because of two remarkable
properties of wavelet expansions:

e It is possible to characterize the pointwise Holder regularity of a function
by simple estimates on the decay rate of its wavelet coefficients, corre-
sponding to the wavelets localized near the point considered.

e Wayvelets are unconditional bases of “most” function spaces.

The second point is relevant because a central problem in multifractal analysis
is to relate the spectrum of singularities of a function f to the function spaces which
contain f. Formulas which perform this bridge are called multifractal formalisms.

This paper is split into five parts:

Section 1 is introductory; we define the pointwise Holder regularity and the
different notions of dimension that we will use. These notions are illustrated by the
study of two functions: The Weierstrass “‘nowhere” differentiable functions, and
the devil’s staircase. These toy examples allow us to introduce, in a very simple
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2 STEPHANE JAFFARD

setting, some of the tools that will be explored and used in the following: The
wavelet criterion for irregularity and the mass distribution principle.

Section 2 is devoted to the wavelet characterization of the pointwise Holder
exponent and the relationship between Holder regularity and local oscillation. We
give a new formulation of this criterion in terms of local suprema of the wavelet
coefficients, the wavelet leaders, which paves the way for the new multifractal
formalism introduced in the following section.

Section 3 is devoted to the study of this new multifractal formalism. First,
a heuristic justification is given; though it follows the lines of the initial argument
given by Parisi and Frisch, this formulation is given in terms of wavelet leaders and
not, as usual, in terms of either increments, or wavelet coefficients. This has the
advantage of eliminating some causes of failure of the multifractal formalism. We
prove that this multifractal formalism yields, for all functions that have a minimal
uniform regularity, an upper bound for their spectrum of singularities; we give an
alternative derivation of the multifractal formalism in terms of local oscillations,
and we prove that both methods are equivalent.

Section 4 is a complement to Section 3: We derive properties satisfied by the
scaling function which appear in the formulation of the multifractal formalism. We
show that it indicates which oscillation spaces contain the function considered and
we give some properties of these spaces.

Section 5 gives “generic” results of multifractality. First, we discuss what
genericity can mean in infinite dimensional function spaces. We focus on one partic-
ularly important notion: Prevalence. Finally, we perform the multifractal analysis
of “almost every” function (in the sense of prevalence) belonging to a given Besov
or oscillation space.

1. What is multifractal analysis?

In this first section we introduce the main concepts that are relevant in mul-
tifractal analysis, and we perform the “multifractal analysis” of two very simple
examples: the Weierstrass functions and the devil’s staircase.

1.1. Pointwise regularity. Multifractal functions are used as models for sig-
nals whose regularity may change abruptly from one point to the next. Our first
task is therefore to define what is meant by pointwise regularity. It is a way to
quantify, using a positive parameter «, the fact that the graph of a function may
be more or less “ruguous” at a point zg.

DEFINITION 1. Let a be a nonnegative real number, and z, € R% a function
f:R?— R is C%(xp) if there exists C'> 0, § > 0 and a polynomial P of degree at
most [a] such that

(1.1) if | —ag] <94, |f(z) — P(z — xp)| < Cla — xo]”.

Remarks: We use the (unusual) convention [o] = ev—1 if v is an integer. This
convention implies that the polynomial P 1s unique even when « is an integer; the
constant term of P is necessarily f(zg); P is called the Taylor expansion of f at g
of order a.
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We will also use a slightly weaker notion; f is C’ﬁ;g(xo) if there exists C' > 0,
d > 0 and a polynomial P of degree at most [«] such that

(1.2) if | —wxg| <4, |f(z) — P(x — 2o)| < Cle — x| log (1/]x — xo]) .
DEFINITION 2. The Holder exponent of f at xg 1s
hi(zo) =sup{a: f is C%xo)}.

Note that (1.1) implies that f is bounded in a neighbourhood of xg; therefore,
the Holder exponent is defined only for locally bounded functions. The Holder
exponent is defined point by point and describes the local regularity variations of
f. Some functions have a constant Holder exponent; they are called monohdlder
functions. We will see that it is the case of the Weierstrass functions; it is also
the case of the sample paths of the Brownian motion which satisfy almost surely:
V&, hp(x) = 1/2. Such functions display a “very regular irregularity”. As a first
example, we now study the pointwise regularity of the Weierstrass functions; indeed,
this will allow us to see, in a very simple setting, how wavelet techniques can be
used to prove irregularity.

1.2. The Weierstrass functions. The Weierstrass functions are defined by
(o]
Wag(z)= Z A" cos(B™x),
n=1

where B is assumed to be larger than 1, so that the series is lacunary, and A is
assumed to be smaller than 1, so that the series converges normally. Derivating
term by term, it is clear that, if AB < 1, W4 p est differentiable. We assume that
AB > 1 which will actually imply that W4 p is nowhere differentiable.

ProrosiTioN 1. If A < 1 < AB, the Holder exponent of Wy p is a constant
function which is equal to o = —log A/log B.

Proof of Proposition 1: Let us first check that Wy g is C'%(z¢) for any
xg € R. In the difference

Wa g(x) — Wa p(x0) = Z A" (cos(B"z) — cos(B"zy)) ,

we can either bound the difference of cosines simply by 2 or, using the mean value
theorem, by B™|x — x¢|. Let

= [Flosllzol]
log B
Using the first bound for n > N and the second one for n < N, we get

N %]
(Wan(e) = Wan(wo)| <> A"B |z —wol+2 ) A"
n=1 n=N
We have to sum up two geometric series. Because of the value taken for N, the
first sum is bounded by C(AB)Y < C|e — x4|®, and the second one is bounded by
CAN < C|x — o], hence the regularity result holds.

In order to prove irregularity of W4 p at every point, we will use a technique
which predates the wavelet methods developed in Section 2.
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DEFINITION 3. Suppose that 1/)(x) satisfies the following conditions

e R

Let f € L*(R), a > 0 and b € R; the continuous wavelet transform of f is defined

by
dx
a

(1.3) (a,b) /f (

LEMMA 1. If f € C%(xp) for a € [0, 1], then the continuous wavelet transform
of f satisfies

Cla, b)] < Cla® + b= 2]").

Proof of Lemma 1: Since ¢ has a vanishing integral,

Can) = [ 76 - staae (1) 2

a a

so that
dx

()%

a
SC/ 2 b 10— ol d
L+ |28 a

Clad)] < [ fe—al?
R

< Cla* 4+ |b— zg|™).
Let us come back to Proposition 1. The idea of its proof is to pick % so that the

computation of C'(a, b) may be as simple as possible. Tt is the case if, in (1.3), only
one frequency of the Weierstrass function is selected. A possible choice is therefore

to pick for ¢ a function whose Fourier transform 12 is C? and satisfies

1

supp(v) C [—

B,B] et P(l) =2

The hypotheses of Lemma 1 are clearly satisfied and, if a = B™Y,
n n, z—b\ dzx

_ZA"/COS (B" N+ B"b)op(u)du.

Because of our choice for 1/), the only nonvanishig integral corresponds to n = N so
that

C(B—N’ b) = ANeiBNb;
thus,
if a=B"Y, then |C(a,b)|=a"
Lemma 1 implies that the Holder exponent cannot be larger than « at any point

and Proposition 1 follows. In particular, the Weierstrass functions are nowhere
differentiable.
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1.3. Measure and Hausdorff dimension. Multifractal analysis studies func-
tions whose Holder exponent can jump from one point to the next. If such is the
case, the numerical computation of the Holder exponent of a signal is completely
instable, and also quite meaningless. One rather wishes to obtain a more global
information such as: Does the Holder exponent take a given value H? And, if such
is the case, what is the size of the set of points where h; takes this value? This
question rises the following problem: Which kind of ‘size’ should we use? The an-
swer can be justified by the study of many mathematical functions: Usually, there
1s a ‘most probable’ exponent, which is taken almost everywhere; therefore, ‘size’
cannot mean ‘Lebesgue measure’, which would not allow to distinguish between
the sizes of all but one sets of points where a given Holder exponent appears. The
Hausdorff dimension is more fitted for this purpose. Let us first recall the notion
of é-dimensional Hausdorfl measure, see [33, 34].

DEFINITION 4. Let A C R If ¢ > 0 and § € [0, d], we denote

5 _ - 16
M _1%f (ZZ]AA ),

where R is an e-covering of A, i.e. a covering of A by bounded sets {A4;}ien of
diameters |A;| < €. The infimum is therefore taken on all e-coverings.
For any d € [0, d], the §-dimensional Hausdorff measure of A is

mess(A) = !g% Mf.

(Note that the limit exists (it can take the value 400) since M? is a decreasing
function of ¢.)

DEFINITION 5. Let A C R% then, there exists do € [0, d] such that
V8 < 8y, mess(A) =40
V8§ > 8y, mess(A) = 0.
This critical §g 1s called the Hausdorfl dimension of A.

The existence of &g is a consequence of two straightforward assertions: If § < §”,

mess(A) < +00 = mesg (A) =0  and mess (A) > 0 = mess(A) = +oo.

In order to bound the Hausdorff dimension of a set, it is sufficient to consider
particular coverings. By contrast, it 1s harder to obtain a lower bound directly
from the definition, since it requires to consider all possible coverings. The fol-
lowing “mass distribution principle” replaces the study of all e-coverings by the

construction of one measure (which is often naturally supplied by the fractal set
considered).

PROPOSITION 2. Let m be a probability measure supported by A C B¢ As
sume that there exist § € [0,d], C > 0 and ¢ > 0 such that, for any ball B of
diameter less than e,

m(B) < C|BJ°.
Then mess(A) > 1/C.

Proof: Let {B;} be an arbitrary e-covering of A. Then

1= m(A) =m (UBZ») <> m(B) <Y Bl
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Other definitions of fractal dimension have been introduced and are used in
multifractal analysis. The simplest notion is supplied by the box dimensions.

DEFINITION 6. Let A C R% if ¢ > 0, let N.(A) be the smallest number of sets
of radius € required to cover A.
The upper box dimension of A 1s

_ log N.(A
dimp(A) = limsup L().
o —loge
The lower box dimension of A is
log N.(A
dim (A) = lim inf 128N
e—0 —loge

One important drawback of the box dimensions is that, if A is dense, then the
box dimensions take invariably the value d. Since most multifractal functions of
interest have dense sets of Holder singularities, box dimensions are unable to draw
any distinction between the sizes of these sets. This explains why box dimensions
are not used in the definition of the spectrum of singularities.

Another notion of dimension which retains some flavour of the box dimension,
but has better mathematical properties, is supplied by the packing dimension.
Invented by C. Tricot, see [99], it can be defined by

dim,(A) = inf {sqp (di_mBAi Ac Ai) }

i=1

(the infimum is taken over all possible partitions of A into a countable collection
A;). The packing dimension has been extensively used in the context of multi-
fractal measures; however its use is much more scarce for functions; see, however,
Proposition 8 where an upper bound for packing dimensions of Holder singularities
is obtained; see also [50] where other bounds of packing dimensions are obtained
for a different notion of Holder singularity.

1.4. The spectrum of singularities. The Holder exponent of multifractal
functions may take a given value on a fractal set. If such is the case, one wishes to
determine the Hausdorff dimension of this set.

DEFINITION 7. Let f: R? =5 R and H > 0. If H is a value taken by the
function k¢ (z), let

(1.4) Eg = {xo €R%: hy(xo) = H}.
The spectrum of singularities (or Holder spectrum) of f is
df(H) = dzm(EH)

(we use the convention dy(H) = —oo if H is not a Holder exponent of f). The
support of the spectrum is the set of values of H for which Fg # 0.

Remarks:

o We will also consider the set

(1.5) Gu={zoeR?: [ Cf (x0)}.
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e These global notions can also be defined locally; if @ C B¢ is a nonempty
open set, we define

Ejj = EgNQ and df(H) = dim(Eg);
clearly, d;(H) = sup d?(H).
Q
e The spectrum of singularities is defined on R* [ J{+o0}.

If h; takes at least two finite values, f is said to be mutifractal. If h; takes only
one finite value, f is said to be monofractal; one example 1s the devil’s staircase,
considered in Section 1.5. In the examples we will consider, d;(H) will usually
take nonnegative values on a whole interval [Hopin, Hmae]. I Hmin # Hmae, its
computation requires the study of an infinite number of fractal sets Fg; in such
cases, the term ‘multifractal’ is completely justified.

To perform the multifractal analysis of a function means to determine
its spectrum of singularities.

One can meet two types of multifractal functions. A first one is supplied by
inhomogeneous functions, which are smoother in some regions than in others. This
case is often met in image analysis. Indeed, an image is a patchwork of textures
with different characteristics. Their spectrum of singularities reflects the mono- (or
multi-) fractal nature of each component, and also of the boundaries (which may
also be fractal) where discontinuities appear. In such situations, the determination
of the local spectrum of singularities d?(H) for the different ‘components’ Q is
more relevant. By contrast, homogeneous multifractal functions present the same
characteristics everywhere. The following definition makes this notion precise.

DEFINITION 8. Let f be a multifractal function (therefore, its Holder exponent
takes at least two values); f is an homogeneous multifractal function if the spectrum
of singularities of its restriction to any nonempty open set € is independent of Q
(and therefore coincides with the whole spectrum of singularities of f).

1.5. The devil’s staircase. The devil’s staircase is probably the simplest
fucntion whose multifractal analysis can be completed in an elementary way. Its
Holder singularities are located on a fractal set, the triadic Cantor set, which is
defined as follows.

Let z € [0,1]; « can be written (in base 3) as

oQ

a; .
l‘:Z3—j with a; € {0,1,2}.

j=1

The triadic Cantor set K is the set of & such that a; € {0,2} for all j.
The devil’s staircase is defined as follows: If # ¢ K, at least one of the a; is
equal to 1. Let [ = inf{j: a; = 1}; then

-1
aj aj
D(x) = Z 9i+1 + o

j=1

The function D(x) is thus defined almost everywhere on [0, 1]. Tt is then extended
by continuity on [0, 1].

One easily checks that D is increasing and that, on K, its Holder exponent
takes the value log2/log3; it is equal to 400 at the other points.
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In order to compute the spectrum of singularities of D, we have to determine
the Hausdorff dimension of K. Let ¢ > 0 and n be such that 377 < ¢ < 3771,
Since K can be embedded in the union of 2" intervals of length 37", using these
intervals as e-covering, we obtain that the Hausdorff dimension of K is at most 4.

A lower bound for the Hausdorff dimension of KA 1s obtained through an appli-
cation of the mass distribution principle. Since D is increasing from [0, 1] to [0, 1],
its derivative p 1s a probability measure. Furthermore, since D is locally constant
on the complement of K, then Supp(p) = K. Let I = [xg, 2] C [0,1]. The Hoder
regularity of D implies that

u(1) = D) - Do) < 2187/ 1%65,

Therefore, mso(K) > %, and the mass distribution principle yields that

log 2

dim(K) > =22
log 3

Hence, we have proved the following statement.

PrOPOSITION 3. The devil’s staircase 1s monofractal; its spectrum of singular-

ities is supported on {%2_12%} U {+oo} where

log 2 log 2
d = d d =1
P (log 3) logs A+

1.6. Notes. The notion of pointwise Holder regularity has been generalized
in several ways. A first one was introduced by A. P. Calderon and A. Zygmund in
1961, and leads to a weaker condition, see [23]: f belongs to TZ (xg) if there exists
a polynomial P(x — xg) of degree at most [a] such that

1/p
(1.6) (id/ |f(z) — Pz — z0)[f dx) < Cre.
r B(zo,r)

Clearly, if f € C*(xg), then ¥p > 1, f € TE(x). This definition is particularly
useful when one deals with functions which are not locally bounded. Indeed, (1.6)
makes sense as soon as f € L ; therefore, it is a natural substitute for pointwise
Holder regularity when functions in L7 are considered. This is particularly rele-
vant when dealing with applications where the signal studied is not locally bounded;
for instance, it is the case in fully developed turbulence where singularities of Holder
exponent -1 corresponding to thin vorticity filaments can be observed, and in mam-
mography images, where microcalcifications also appear as singularities of Holder
exponent -1, see [5]. If f € LT _ one defines the p-exponent at zy by

loc)
hip(wo) =supfa: feTh(xo)},
and the p-spectrum of f by
Ay p(H) = dim ({0 s hyplae) = HY).
These notions were studied by C. Melot in [85].

Let us mention another situation where the p-exponent is more relevant than
the Holder exponent. Suppose that €2 is a domain with a fractal boundary; up to
now, only one parameter was available to classify these domains: The dimension
of their boundary. At each point x; of the boundary, the Holder exponent of the
characteristic function f = 1g takes the value 0; this i1s in sharp contrast with the
1-exponent which can clearly take any value in [0, 0o], depending on the behavior of
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the boundary near xy; this remark allows one to perform a multifractal analysis of
fractal boundaries and leads to a whole function (the 1-spectrum) as discriminating
parameter between these domains; this yields a a much richer classification tool for
fractal domains, see [59].

On the other hand, Hélder regularity can be strengthened as follows, see [50].
We denote by meas(A) the Lebesgue measure of a set A. Let a > —d; a point zg
is a strong a-singularity of f if there exist C,C” > 0 such that V P polynomial of
degree at most o, Vj,3A;, B;

meas(Aj) > C2=% meas(B;) > C274
Ve € A;jUB;j, |[v— x| <277 '
Vi € Aj, Wy € By, (f(x) - P(x — o)) — (J(5) — Ply— o)) > €27,

Note that, if o < 1, the last condition reduces to f(z) — f(y) > C’27%/. Bounds
on the packing dimension of the strong a-singularities have been obtained in [50];
see also [59] where estimates on the the packing dimension of the boundary of a
domain in IR? are obtained in terms of the wavelet coefficients of the characteristic
function of the domain.

A natural question is to determine which nonnegative functions h(z) are Holder
exponents. An exact characterization of the Holder exponents of continuous func-
tions was obtained by P. Anderson, see [2] (following results of S. Jaffard [49] and,
independently of K. Daoudi, J. Lévy-Véhel and Y. Meyer [30]): h(x) is the Holder
exponent of a continuous function [ if and only if it is the lim inf of a sequence of
continuous functions. (Note that the problem is still open if f is not assumed to be
continuous). The first constructive proofs used deterministic constructions for f.
In practice, for simulation purposes, one needs to construct random processes. This
led to the introduction of multifractional Brownian motions, which are Gaussian
processes generalizing the Brownian motion. This study was initiated by A. Be-
nassi, S. Jaffard et D. Roux in [18], and independently by J. Lévy-Véhel et R. F.
Peltier in [76]. The most general constructions were obtained by A. Ayache and J.
Lévy-Véhel, see [10]. One can also consult the survey paper [16] by A. Benassi, S.
Cohen and J. Istas, which covers a wider range of related problems.

The notion of Holder exponent 1s adapted to functions whose regularity changes
abruptly from point to point. When it is not the case, the more stable notion of
local Holder exponent can be used:

H¢(xo) =inf{a: 36 >0, fe C[ro— 0,20+ 9])}.

J. Lévy-Véhel has studied the properties of this exponent. In particular, in collab-
oration with S. Seuret, he proved the following characterization: The local Holder
exponents of continuous functions are exactly the nonnegative, lower semicontin-
uous functions, see [77]. However, up to now, this notion has had no impact on
multifractal analysis: Indeed, all multifractal functions we will meet have a constant
local Holder exponent.

The idea of associating fractals to measures or functions can be traced back
to the books by Mandelbrot in the 70s and 80s [82, 83]; see also [84] where the
main contributions of B. Mandelbrot to multifractal analysis are collected, and [32]
where C. Evertsz and B. Mandelbrot give an extremely pedagogical introduction
to multifractal measures. Multifractals were introduced by G. Parisi and U. Frisch
in [92] for modeling fully developed turbulence, following the pioneering work of B.
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Mandelbrot; indeed, B. Mandelbrot had introduced multiplicative cascades mod-
els in [81], which were studied by J.-P. Kahane et J. Peyriere in [66] (see also
[14, 15, 89] and references therein); it is remarkable that these cascades, initially
introduced as models for the dissipation of energy in turbulent flows before the no-
tion of multifractal was introduced actually supplied the first mathematical models
of multifractal measures.

Here is a very simple example of a multiplicative cascade which is a multifractal
measure. It is constructed recursively on [0,1] as follows. Let a € (0,1), b =
1—a, and p € (0,1). We pick at random p([0,1/2]) = a or b, with probabilities
respectively p and 1 — p, and p((1/2,1]) = 1 — p([0,1/2]); Once the measure of
a dyadic interval A has been determined, we split this interval into two “sons”
of the same length; the measure of its left son X is also picked at random and
takes the value p(A) = ap(A) or (1 — a)u(A) with probabilities respectively p
and 1 — p, and the measure of its right son is u(A) — p(A’). One thus constructs
iteratively a random probability measure on [0,1]. This is the simplest example
of a multiplicative random cascade; there exists a huge literature on multifractal
cascades; see [14, 35, 89] and references therein for a mathematical analysis of
these cascades, and [101, 12, 15] for important recent generalizations.

We won’t consider multifractal measures in these notes; let us just mention that
the notion of Holder exponent is replaced by the local dimension of the measure p

defined as

_ o clog (u([wo — 6, w0 +4]))
hy(zo) = hgglonf log(0) ,

see [19, 21, 32, 44, 91, 34]. However, a relationship between Hoélder regularity
for measures and functions can be explicitely established in the one-dimensional
setting: If p is a probability measure supported on R, let f(z) = pu((—o0, z]); one
immediately checks that

it hu(zo) €[0,1), then h,(zo) = hs(zo).

The problem we mentioned concerning the Holder exponent can also be raised
for the spectrum of singularities: Which functions d(H) are spectra of singularities
of continuous functions? We only have partial answers: limsup of nonnegative
piecewise constant functions are spectra, see [50], but we do not know if this class
covers all possible spectra. Furthermore, one would rather wish to characterize the
spectra of homogeneous multifractal functions; in this case, only very partial results
are known, see [55].

There exists many generalizations of Cantor’s triadic set and of the devil’s
staircase; see for instance [65] where more general perfect sets are constructed and
their relationships with trigonometric series are studied. Another generalization,
fractal strings, was introduced by M. Lapidus and C. Pomerance in [71, 72]; it
was then used in a number of papers, including those by M. Lapidus and H. Maier
[69, 70], C. He and M. Lapidus, see [42, 43] and M. Lapidus and C. Pomerance,
see [73]; see also the reference book [74] by M. Lapidus and M. van Frankenhuysen.

The box dimensions yield an important information on the fractal geometry of
the graph of functions, which is independent of the spectrum of singularities. Gen-
eral formulas which allow to derive the box dimensions of the graphs of arbitrary
functions from their wavelet expansions are available, see [53] and [67]. The prob-
lem of determining the Hausdorff dimensions of graphs is often very hard, especially
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in deterministic settings; see however [17], and [11, 95, 96] where estimates are
derived from wavelet expansions.

The notion of homogeneous multifractal functions is important for modelling;
indeed, with regards to fully developed turbulence, Parisi and Frisch conjectured
that its behavior is wuniversal, i.e. that the spectrum of singularities does not de-
pend on the particular fluid considered, on the limit conditions,... In particular, if
this hypothesis is verified, the spectrum of singularities of the velocity of a turbu-
lent fluid should be independent of the region where the fluid is being inspected,
and therefore, the velocity of a turbulent fluid 1s expected to be an homogeneous
multifractal function. Usually, the mathematical functions which are known to be
multifractal are actually homogeneous multifractals. We will see several examples
backing this assertion.

2. Wavelets and Holder regularity

Orthonormal wavelet bases are a privileged tool to study multifractal functions
for several reasons. A first one, exposed in this section, 1s that the Holder exponent
can be characterized by simple local decay conditions on the wavelet coefficients.
Another reason, discussed in Section 3, concerns the study of the multifractal
formalism. 1t is a formula which is used to derive the spectrum of singularities of
a function f from the knowledge of some function spaces which contain f. Here
again, wavelets play a key role since these spaces are defined by simple conditions
on the wavelet coefficients.

We will just recall some properties of orthonormal wavelet bases that will be
useful in the following. We refer the reader to [27, 31, 64, 75, 80, 87] for detailed
expositions of this subject.

2.1. Orthonormal wavelet bases. Orthonormal wavelet bases are construc-
ted through the help of a multiresolution analysis. Tt is a sequence of closed sub-
spaces of LZ(R%) denoted by V; (j € Z) and satisfying:

(2) Vi €Z, f(z) €V <= f(2) € Vj11,
(3) Jp(x) € Vo such that the functions p(z—k) (k € Z¢) form an orthonormal

basis of V4.
(4) ﬂ V; = {0} and U Vj is dense in LZ(RY).
J€D JEL

The multiresolution analysis is 7-smooth if ¢ is C" and if the 8%y, for |a| < r, have
fast decay.

The subspace W; is defined as the orthogonal complement of V; in V;4,. Under
these assumptions, there exist 2¢ — 1 functions (") satisfying the same regularity
and decay properties as ¢ and such that the 1/)(i)(x —k)(i=1,.,29-1keZ9
form an orthonormal basis of Wy. Using Point 2, it follows that Vj € Z, the
24/24p(1) (272 — k) (k € Z%) form an orthonormal basis of W;.

By construction, the W; are orthogonal, and we can use two possible decom-
positions of L?(R9) as a direct orthogonal sum

400 +oo
L2: @ W] or LzIVO‘i‘@Wj,
7=0

j=—00
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which leads to two possible ways to write a function of L2

(2.1) F@)y= 23" e (@ — k),

JELKETA i

or

(2.2) F@) = Crplw—k)+Y_ > > D@z —k);
keZd j=0kezd 1

the C;" , are the wavelet coefficients of f

(2.3) cp=24 | fla)y(2x — k)de,
R4

and

(2.4) Cy = fx)p(x — k)de.
R4

A consequence of Point 2 is that the functions 2dj/2g0(2jx — k) form an orthonormal
basis of V;. Thus, if P;(f) denotes the orthogonal projection of f on Vj,

Pi(f)(x) = ch,k@(zjl‘ — k) where Cjp = 24 / f(@)p(2P e — k)de.

Remarks: In (2.1) or (2.2), we do not choose the L? normalisation for the
wavelets, but rather an L° normalisation which is better fitted to the study of
Holder regularity.

Note that (2.3) and (2.4) make sense even if f does not belong to L?; indeed,
if one uses smooth enough wavelets, these formulas can be interpreted as a duality
product betweeen smooth functions (the wavelets) and distributions (f). We will
see the cases of Sobolev and Besov spaces in Section 4.1.

A simple example of multiresolution analysis is obtained, in dimension 1, by
taking ® = 1o 17; in this case, Vj is the space of square integrable functions which
are constant on each interval [2%—, %';i], and a possible choice for W is 1[g 1/91—1[1/2,1]-
The corresponding wavelet basis is called the Haar basis.

Among the families of wavelet bases that exist, two will be particularly useful

for us:

o Lemarié-Meyer wavelets, such that ¢ and (") both belong to the Schwartz
class;
e Daubechies wavelets, such that the functions ¢ and ¥(#) can be chosen
arbitrarily smooth and with compact support.
We will often assume that the multiresolution analysis is of tensor product type
ie,if x = (x1,...24), then
o) = O(x1)P(x2) ... P(xyq),
where ®(z) is associated to a 1-dimensional multiresolution analysis. If ¥(x)

denotes the corresponding 1-dimensional wavelet, we can take for d-dimensional
wavelets the functions

1/)(i)($) =Wy (21)Us(z2) ... Ty(zy),

where ¥; denotes either ® or ¥, and where the choice ®(x1)®(z2)...P(x4) is the
only one excluded (thus there are indeed 2¢ — 1 wavelets).
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If the multiresolution analysis is r-smooth, the wavelets have a corresponding
number of vanishing moments, see [87]:

If |o] < v, then OO (2)z%de = 0.
R4

Therefore, if the wavelets are in the Schwartz class, all their moments vanish.

2.2. Wavelets and uniform regularity. We start by characterizing uniform
regularity properties in terms of the wavelet coefficients. Let us recall the definition
of the Holder C'* spaces.

DEFINITION 9. Let a € (0,1). A function f belongs to C*(R9) if
f € L (RY and if 3C' > 0 such that
(2.5) Yo,y e R |f(x) = f(y)] < Cle —y|*.
Let « > 1 and o ¢ N. A function f belongs to C*(R%) if f € L*°(R%) and has
partial derivatives of any order |8| <[] and if, when |5| = [«], then
(2:6) Yoy R 107 f(x) = 07 f(y)] < Cla—y|* 710

The C'* norm of f is the sum of || f ||co and of the infimum of the Cs such
that (2.5) or (2.6) holds. The following proposition shows that the space C'* is
characterized by a very simple decay condition on the wavelet coefficients.

PROPOSITION 4. Let o > 0 be such that o ¢ N and assume that the multires-
olution analysis is of tensor product type and r-smooth with » > [«] + 1. Then
VkeZd |Gyl <C
(2.7)  feC*(RY) <= 3C>0: ' '
Vj>0,Vi, YkeZ® |c;k| <C27%.

Remarks: In the following, we will usually not mention the regularity needed
for the wavelets, which will be assumed to be “smooth enough”; the minimal reg-
ularity required following easily from the computations.

Proposition 4 holds for any wavelet basis which is r-smooth with » > a because
the matrix of a change of wavelet basis is continuous on the space of coefficients
satisfying (2.7), see [87].

Proof: Suppose that f € C*(IR9); then,
G < [ 1@ el = k)l < L

The wavelet 1(*) (z) can be written ¥y (21)Wa(z2) ... ¥4(xq), where the ¥; are equal
to @ or ¥, and at least one of them is equal to W. Suppose that it is the case for
Uy Itk = (k... kq),

C;',k =924 , flaer, ...y xd)\I!(ijl —ky) .. .\I!d(ijd — kq)dxy .. .dzg.
]
The function ¥(z) has its first [a]+1 moments vanishing; therefore it can be written
dl*lw
T dzled]

where W still has fast decay and a vanishing integral. Let

X

X

P(ay,...xq) = U(x1)Va(a) ... Ty(g).
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Integrating by parts [«] times in the direction z1, we get
C;’,k =29 /f 231‘ — k)dx

dlel g
dx[la]

= (gt [ d[“[]f]u)—ﬂ[]f](i) F(@a— )da
da:la da:la 2

(because 1/; has a vanishing integral); therefore, using the decay of 1/;,
a—[a] C
i< c2dinTledi / .
| C]yk |_ (1_|_ | Ve —k |)d+2
Let us now prove the converse result. Assume that

(2.8) |Cr] < C  and |c Kl <027 o,

Let
=3 Cple - k)

= (=1)lelodig-[eli / (2)0(2 2 — k)de

k
2

x — de < (0274

and, if 7 > 0,
(2.9) ZZ ch D20z — k);

let us consider the series

+oo
(2.10) > filw)

j=—1
Using (2.8) and the decay of ¢ and (), one obtains that (2.9) converges uni-
formly on any compact to a limit f; which has the same regularity as the wavelets.
Furthermore,

. 9o .
V]Z_la |f]( |<CZ 1+|2]l‘—]{7|)d+1 SCQ ]

therefore, the series (2.10) converges normally to a function which we denote mo-
mentarily by g and which belongs to L®. Similarly, using the decay of the %
and of the %4 one obtains

(2.11) if Bl<[a]l+1, |3°f(x)|< C2UPl=2)

We can differentiate term by term the series ) f; up to the order [«], and still
obtain a normally convergent series; thus ¢ belongs to C1*] and

Vgl < o], [07g(x)| < C.

Let # and y in R¢ and j, be defined by 27701 <| # — o |< 277°; if | 3] = [a], then
| 8% g(x) — 8Pg(y) | is bounded by

1P f@) =P fiw) |+ X 107 fi(@) [+ 3 197 f5(w)

i<jo J>jo Jj>Jo
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Using (2.11) and the mean value theorem, the first term is bounded by
dle—yl sup sup |0°f;()| <Cla—y| )y 2letimei

i<jo |8|=[a]+1 [#,z0] i<jo

S C | T — xg | 2([05]+1_O‘)j0.

Coming back to the definition of jp, it follows that the first term is bounded by
C'| & — g |*. The second and third terms are bounded by

Z 9([a]-a)i < c9o[el-a)io <C|z—ao |0<—[04] )
J>jo

J
Let us now prove that f = g. We consider the sequence F; = f — Z fj; its
j=-1
wavelet coefficients vanish for j < J and it shares the same wavelet coefficients as
fif j > J. Therefore, the same computation as above shows that || Fy ||c < C277,
so that f = g¢; hence the converse result holds.

2.3. Characterization of the Holder exponent. We start by introducing
some definitions and notations. A dyadic cube of scale j is a cube of the form

\ = ki ki+1 kg kq+1
Tl Ty ) e Ty )

where k = (ky,...kq) € Z4 TInstead of indexing the wavelets and wavelet coeffi-
cients with the three indices (4, j, k), we will use dyadic cubes. Since i takes 2¢ — 1
values, we can assume that it takes values in {0,1}¢ — (0,...,0); we will use the
following notations:

o k i 1 \¢
[ ] A (I A(Z,j,k’)) = 2—] 2j+1 + O’QJT .
® C) = C;",k

o Un(x) = 1) (Pa — k),
k

® Uy = —.
27
The wavelet 1, 1s essentially localized near the cube A; more precisely, when the

wavelets are compactly supported

AC' > 0 such that V7,7, k, supp (¥r) CC - A

(where C'- X denotes the cube of same center as A and C' times wider). Finally, A;
will denote the set of dyadic cubes A which index a wavelet of scale j, i.e. wavelets
of the form < (z) = (272 — k) (note that A; is a subset of the dyadic cubes of
side 2/11). We take for norm on R¢

if ©=(x1,...,24), |x|:'sup |2;;

i=1,...,

so that the diameter of a dyadic cube of side 277 is 277.
DEeFINITION 10. The wavelet leaders are defined by

(2.12) dy = sup |ea|.
A CA
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Note that if f € L, then

o <29 [ 7@l (e)lde < Coup 7))

so that the wavelet leaders are finite.

DEFINITION 11. Two dyadic cubes Ay et A are called adjacent if they are at
the same scale and if dist(A1, A2) = 0 (note that a dyadic cube is adjacent to itself).
We denote by Aj(zg) the dyadic cube of side 277 containing zo and by Adj()) the
set of 3¢ dyadic cubes adjacent to A. Then

d;(xo) = sup dyr.
NeAd (A (o))

DEFINITION 12. The influence cone at xg consists of the set of dyadic cubes
of the form A;(zo) and their adjacent cubes.

The wavelet characterization of the Holder exponent requires the following
regularity hypothesis, which is slightly stronger than continuity.

DEeFINITION 13. A function f is uniformly Holder if there exists € > 0 such
that f € C¢(RY).

The following theorem allows to characterize the pointwise regularity by a decay
condition of the d;(x) when j — 4o0.

THEOREM 1. Let a > 0. If f is C'*(xy), then there exists C' > 0 such that
(2.13) Vi >0, di(x) < C27.
Conversely, if (2.13) holds and if f is uniformly Holder, then f belongs to C’ﬁ;g(xo).

Remark: If f is uniformly Holder, its regularity at zg is therefore determined
by the behavior of the dy in the influence cone at 7. More precisely, one can notice
that the characterization supplied by Proposition 4 can be rewritten

3C VA dy < 0279,

Therefore pointwise and uniform Holder regularity are characterized by the same
decay condition, either written locally (in the influence cone) or uniformly.

Proof of Theorem 1: If f is C*(xg), then there exists a polynomial P of
degree at most [a] such that

|f(x) = P(x — wo)| < Clz — wo|™.
Let j > 0;if X C 3X;(x0), then, using the vanishing moments of the wavelets,

v =20 [ f@p0 e~ kyde =28 [ (7(0) = Plo = 200020 - k)

thus |cxs| is bounded by

vl — o vl — 7 —|— | /,L)\/ — 1‘0 |Oc
C24 | &= 2o | dz < 2% /'x Ay |
/(1+ |20 — k' |)Hott 0= (14 | 20z — k' [)FFatt

(because, Yo, a,b > 0, (a+5)* < 2%(a*+56%)). The change of variable t = 2 e — k'
yields

(2.14) lea| < C27% + |par — 20|%).

| o

dx
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Since j/ > j — 1 and |y — zo| < 4d277, we have |ex/| < €272 so that dj(zg) <
C2-d

Let us now prove the converse result. First note that, since f is uniformly
Holder, Proposition 4 implies that the wavelet series of f converges uniformly to f
on any compact. Let j' be given. We will first estimate the size of f;; and of its
partial derivatives. If M is a cube of side 274", denote by A (= A(N)) the dyadic
cube defined by

o If M C 3);/(x0), then A = Xji(z0),
o else, if j =sup{l: N C 3X\(z0)}, then A = A;(z0) (and it follows that
2-7-1 < |/J>\/ - l‘0| < 4d2_j).
In the first case, by hypothesis, |ex| < dji(zn) < C.27%" and the sum on the
corresponding A’ satisfies (as in the proof of Proposition 4)

|ZC>\/1/)>\/ |<02 a].

In the second case, |ex| < dj(xo) < C27% < Clzg — par|® and the sum on the
corresponding values of A’ of scale j' satisfies

|20 — NA'|
Zcxﬂ/))\/ <CZ (05 2% = k]t

)\I
— xo|” + Ix—mfla
<
CZ 1_|_ |2] T — |)d+oc+1
<O —ao|* + 279",
Thus
(2.15) ) < € (2709 + e — o) 5

Similarly, one obtains, for any 3 such that |3] is smaller than the regularity of the
wavelets,

(2.16) 107 fir()] < €2 (2799 4 — o)

(o]
In particular, if | 3] < [«], the series Z d° fi(zo) converges absolutely; (recall that,
j=-1
by convention, if « is an integer, [«] = & — 1) and we can define the polynomial

r — o &
Ple—zn)= Y Lo S 00 aa)

181<[e] j==1
P is the sum of the polynomials
(x — 20)°
Pi(x—xo)= ) Tﬁﬁfj(l‘o);
181<[e]
Since P; is the Taylor expansion of f; of degree [a] at xg,

i) = Pir = x0)| < Clar = oM sup > 7197 f]
ol p=a]+1
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(2.17) < Ol — wo|ledFioled )i (9= 41 — 2q]%) .

We will now bound

(2.18) |[f(2) = Pl —z0)| = | Y (fil2) = Pi(e —20))|.

jz-1

By hypothesis, there exists ¢ > 0 such that f € C°(R9). Let jo and j; be defined
by
27907 L —xg |[< 270 and j; = [%] :
€
We have jy < C|log|z — zol|. If § < jo, using (2.17), the sum of the corresponding
terms of (2.18) is bounded by

D Cle = a0 (2799 4 | — a]*) < Cliofe — o]
J<jo
If jo < j < ji, (2.15) implies that |f;(z)| < Clz — zo|*; so that

(a4 C (a4
Zlfy )< Chitle = wo]® < —la — 20| [log(|x — o).

J=Jjo

If j > ji, since f is uniformly Holder, Proposition 4 implies that |f;(z)| < €27,

and
(o)

S (@) < 027 < 0270 < Gl — g,
J=i1
Finally, using (2.16),

Z|P (x —xg)| < CZ Z ﬁ 8ﬁf(l‘oﬂ

J>jo J2jo81<[a]

<C Z Z |l — x0|02|ﬁ|j2—04j

J2jo|Bl<[e]

< Cle = xo]™.

The converse part of Theorem 1 1s thus proved.

2.4. Quasisure Holder regularity in C%(R%). We will now prove a quasi-
sure result which is a direct consequence of Theorem 1. Let us first recall Baire’s
category theorem:

If £ is a complete metric space, every countable intersection of open
dense sets is dense.

If a property P(x) holds (at least) on a countable intersection of open dense
sets, 1t 1s said to hold quasi-surely. Note that a quasi-sure property P does not
necessarily hold on a large set; indeed, in R? a quasi-sure property may hold only
on a set of measure 0 (and even of dimension 0). Tt rather means that the property
holds on a “very dense” set. Indeed, countable intersections of such sets are still
dense.
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PROPOSITION 5. Let o > 0 and such that o ¢ N. The functions of C*(IR¢) are
quasi-surely mono-Hélder with Holder exponent h(z) = a. (The set of mono-Holder
functions of exponent « even contains a dense open set of C%(R%)).

Proof of Proposition 5: We assume that a smooth enough wavelet basis has
been chosen. Any function f € C'® can be written in the form

Fa) =2 ewple—k)+3 .3 3 cpv (e - k),
k i >0 k
where

sup(lex], 271} 1) < C.
ik

We can choose for equivalent norm in C%(R9) the infimum of the C's such that this
inequality holds. If N is a given integer, let Ey be the subset of C%(R%) defined
by: F € Ey if all |ex| and 2°‘j|c§»7k| are nonvanishing integer multiples of 27V,
Clearly
Ve CYRY dist(f, Ex) <27V,

so that |Jy_, En is dense in C*(R?). In a metric space E, we denote by B(z, R)
the open ball of center = and radius R. Let Fy = Ex + B(0,27N-1). Fy is an
open set. Any function f of Fiy satisfies

ik 2%ef | > 27N

and the direct part of Theorem 1 implies that the Holder exponent of f is everywhere
at most a. Since, on the other hand, any function f of Fiy belongs to C*(RY), f is
clearly a mono-Holder function of exponent . The union of the Fy is the expected
open dense set.

2.5. Holder exponent and local oscillations. We will now see a conse-
quence of Theorem 1 which supplies an alternative definition for Holder regularity.
In this new definition, the polynomial P, which may be difficult to exhibit, does
not appear explicitly.

Let f:R?— R and h € R The first order difference of f is

(AL H)(@) = flz +h) — f(z).
If n > 1, the differences of order n are defined recursively by
(ARf) (@) = (AT ) (@ + k) = (AT ) (@)

DEFINITION 14. If A is a convex subset of R? the oscillation of order n of f
on A is

0S%(4) = sup  |(ARf)(x)].
[z,z+nh]CA

Note that

OS} (A) = sgg flx) — xnel,fax flz).

ProprosiTION 6. If f € C%(2), then
(2.19) Vn>[al+1 Ve>0 [OS}(B(xo,€))| < Ce®.
Conversely, if f is uniformly Holder and if (2.19) holds, then f € C’ﬁ;g(l‘o).
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Note that, if 0 < a < 1, the triangular inequality implies that
fFel(xy) <= Ve>0 |OSJ1¢(B(1‘0,€))| < Ce”.
Proof of Proposition 6: Assume that f € C*(xg). Since
|f(x) = P(x — wo)| < Clz — 2ol
it follows that
if |o—ag] <e, then |AR(f(z) — Pz —xp))| < 2"Ce™.
But, if n > deg(P), A} P(xz — zg) = 0. It follows that |A} f(z)] < Ce*.

In order to prove the converse result, we need the following property of one-
dimensional wavelets.

LEMMA 2. Assuming that the multiresolution analysis is n-smooth, for any
n > 1, there exists a function #, with fast decay and such that ¢ = A’f/zﬁn.
Furthermore, if ¥ 1s compactly supported, we can pick 8,, also compactly supported.

Proof of Lemma 2: Recall that, in the construction of one-dimensional
wavelets by multiresolution analysis, the embedding V_; C Vy implies the exis-
tence of coefficients {; such that

o (g) = lp(x —k);

which can be rewritten in the Fourier domain as

P(26) = mo(§)$(£),
where mg 1s '™ and 2m-periodic. Furthermore, mg vanishes at m to the order at
least 7, see [87]. One can pick for wavelet 1 the function

¥(2€) = e (€ + m)P(E).
It follows that 12(25’) vanishes at the multiples of 27 to the order at least ». Fur-
thermore, if ¢ is compactly supported, mg is a trigonometric polynomial, so that
(after perhaps translating ¢), mq(& + 7) can be written
(2:20) mo(€+7) = (¢ = 1)"P(9),

where P is a trigonometric polynomial, and therefore

n

P(¢) = Z ae*e,

k=—n

In dimension 1, to apply A} to f amounts to multiply f(&’) by "¢ — 1. Therefore,
we look for a function #,, such that

D(E) = (€612 = 1), (€).

= _igja Mo+ m) (&
inte) = i T 5 (5.

We can define 6,, by

(e + )
(ei€/2 — 1)n
Furthermore, if ¢ is compactly supported, (2.20) implies that n(£) is a trigonomet-
ric polynomial, and therefore 8, is compactly supported. Hence Lemma 2 holds.

Since the function n(§) = 1s ' and 4r-periodic, 6, has fast decay.
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Let us now prove the converse part in Proposition 6. Assume that, in dimension
d, we use the tensor-product wavelet basis. Then

PO () = Wy, W (zy),

where the U are either ¢ or go, but at least one of them is equal to ¢. Suppose for
instance, that W!(z1) = v(x1). Then

C;’,k =24 /f 231‘1 — k1) .. \I!d(ijd — kq)dx

:/f(x;;k) W (21) .. 0 () de
Clearly, in dimension 1,
(2.21) [ @i = -1 [ @

so that

(222)  ciy= (_1)”/ (a7./27) (%"7) 0 (21) 92 (22) ... W (),

with e; = (1,0,...,0).

k
Let Ko = B(0,1) and if 1 > 0, K; = B(0,2') — B(0,2"-1). If 2 € Ky, 22 and
97
k .
x;; — % belong to B(zg, |zo — pra| + n2!=7). Therefore
x —|—k
‘/ N ( ! ) o (21) 0% (23) .. U (2y)da
K,
<c (|l‘0—ﬂ>\|+n?l_‘7) v < (|x0—/i>\|+”2l_j)a
R P e P L
N g2

|zo —
which is bounded by Cﬁ . The

sum over [ is therefore clearly bounded by |zg — gz |* + 27%7; hence (2.14) holds
and the converse part in Proposition 6 is now a consequence of the converse part
of Theorem 1.

if n2'=7 < 2o — px|, and else by C 51

The following corollary follows from Theorem 1 and Proposition 6. It character-
1zes the Holder exponent by local decay conditions of the oscillation, or, equivalently,
by local decay conditions of local suprema of the wavelet coefficients.

CoroOLLARY 1. If f is uniformly Holder, the Holder exponent of f can be
computed using either

(2.23) hy(x0) = lim inf <log(dj(xp)))) ’

j—eo log(2-7
or
log(|OS% (B
(2.24) hy(zo) = sup [liminf ( og(|OS) ( (1‘0,6))|))] .
neN [ €20 log e

Remark: The supremum over n in formula (2.24) should be understood as
follows: The term between brackets is equal to n as long as n < [hf(z)] and
becomes independent of n if n > [hf(z0)].
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2.6. Notes. The first construction of an orthonormal wavelet basis was per-
formed by Haar in 1909; we saw that the corresponding wavelet 1s discontinu-
ous. The first arbitrarily smooth orthonormal wavelet bases were constructed
by Stromberg in 1981. Wavelets in the Schwartz class were introduced by P.-G.
Lemarié and Y. Meyer in 1986. The construction by multiresolution analysis was
performed by S. Mallat and Y. Meyer in 1989, and compactly supported wavelets
were introduced by I. Daubechies shortly afterwards.

The wavelet characterization of the space C*(R?) is remarkable; it is in sharp
contrast with Fourier expansions: Indeed, the space of periodic C* functions cannot
be characterized by a condition bearing on the moduli of their Fourier coefficients,
see [102].

Hardy and Littlewood are the forerunners of the wavelet method used to prove
irregularity at a point. They had noticed that, if f is smooth at zg, the convolution
of f with a smooth, well localized function ¢ of vanishing integral (a “wavelet”) has
to be small near zo, see [40, 41]. Trregularity results are obtained by contraposition.
(One can interpret wavelet coefficients as a convolution product of f(z) with (2 z),
this convolution being then sampled at the points £277.) Hardy and Littlewood
applied this method to the Weierstrass functions, but also to the “non-differentiable
Riemann function” ) sm(zﬂ#%), which 18 much more difficult to handle since its
Holder exponent is everywhere discontinuous; they showed in 1914 that this function
i1s not differentiable, except perhaps at the rational points gz—ii, and J. Gerver
showed in 1970 that, indeed, it is differentiable at these points, see [37]. This was
the first function, with unbounded variation, which was proved to be multifractal
(in 1996, see [51]). More properties of this remarkable function are exposed in [62].

If irregularity results using the wavelet technique were at least implicit in Hardy
and Littlewood’s paper in the 1910s, the first converse result only appeared in
1989, in [47]; nonetheless, one should mention a remarkable result of J.-P. Kahane
who proved in 1976 the existence of slow points of the Brownian motion using its
decomposition on the Schauder basis, which predates these wavelet techniques, see
(63, 64].

We mentioned in Section 1.6 several generalizations of pointwise Holder regular-
ity. Another generalization, the scaling exponent, 1s based on the Littlewood-Paley
decomposition of f; it has been introduced by Y. Meyer in [88]. Moduli of conti-
nuity more general than 0(z) = 2® and their wavelet characterization are studied
in [60].

The idea of studying the properties of a function using the wavelet leaders dj
rather than the wavelet coefficients first appeared in the resolution of the following
problem: Find a formula which yields the upper box dimension of the graph of a
function; the answer is expressed in terms of the dy, see [53].

Condition (2.13) used to be written in the form

eal € G279 (1 + |27 — K|)*

(which is clearly equivalent to (2.13)). This condition is a particular case of the
two-microlocal conditions C’s’sl(a:o) defined by

(2.25) lex] < 275 (14 272 — k|)™°.

Two-microlocal conditions were introduced by J.-M. Bony as a tool in the study of
the propagation of singularities of solutions of PDEs. The set of couples (s, s') such
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that f € C’s’sl(a:o) is called the {two-microlocal domain of f at xy. It yields a very
accurate information on the local oscillations of f near zg and the regularity of its
fractional derivatives and primitives at xg. The properties of the two-microlocal
domain were investigated by J. Lévy-Véhel, S. Seuret and their collaborators, see
[78], and the paper in the present volume [79].

The converse part in Theorem 1 requires a uniformly Holder assumption. Even
if this assumption can actually be slightly weakened, a uniform regularity assump-
tion, strictly stronger than continuity, is necessary, as shown by Yves Meyer, see
[48]. Therefore, wavelet methods cannot be used to study functions which have a
dense set of discontinuities. Such functions are not just a mathematical curiosity;
for instance, most Lévy processe (processes with independent, stationary incre-
ments), which play a central role in probability, share this property, see [54]. Tt is
also the case for Davenport series which are of the form

- 1
Z an{nz} where {2} =o—[z]— o

n=1

see [58]. Note however that, in [61], pointwise Holder estimates are obtained with
only a Besov regularity assumption which implies no uniform C€ regularity (but
is strictly stronger than continuity). Similarly, the logarithmic correction in the
converse part of Theorem 1 is best possible, see [48].

The generalizations of the pointwise regularity conditions mentioned in Sec-
tion 1.6 also have wavelet characterizations; for instance, C. Melot has obtained a
wavelet characterization of the TE(zg) condition, see [85].

The first quasi-sure result concerning Holder regularity is a famous theorem by
Banach, in 1931, which states that a continuous function is almost surely nowhere
differentiable, see [13]. Z. Buczolich and J. Nagy proved in [22] that quasi-all
monotone continuous functions are multifractal and their spectrum is

d(H) =H if Helo1],

- 1if H>1.

3. The multifractal formalism

The spectrum of singularities of many mathematical functions can be deter-
mined directly from its definition. On the opposite, for many real-life signals,
whose Holder exponent 1s expected to be everywhere discontinuous, the numerical
determination of their Holder regularity is not feasible, and therefore, one cannot
expect to have direct access to their spectrum of singularities. In such cases, one
has to find an indirect way to compute d(H); the multifractal formalism is a for-
mula which is expected to yield the spectrum of singularities of f from “global”
quantities which are numerically computable. Mathematically, these quantities are
interpreted as indicating that f belongs to a certain subset of a family of function
spaces. There exist slight variants on these formulas, which depend on the family of
function spaces used. Their validity never holds in complete generality. However,
three types of verification can be performed:

e The multifractal formalism is proved under additional assumptions on f
(a self-similarity assumption, or for a class of particular random processes,
or even for very specific functions f, see [3, 50, 51] for instance).
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e It is proved for a “large” subset of the function space considered; the
quasi-sure result of Proposition 5 in Section 2.4 supplies such an example.
We will also see prevalence results in Section 5.

e The multifractal formalism is shown to yield an upper bound of the spec-
trum of singularities of any (uniformly Hoélder) function, see Section 3.2.

In this section, we will first describe the heuristic arguments used in the deriva-
tion of the multifractal formalism. They will be presented in two different contexts:
First, in Section 3.1 using wavelet expansion, and in Section 3.3 directly on incre-
ments of the function. This will lead us naturally to introduce some new function
spaces, the oscillation spaces, which will be studied afterwards. In Section 3.2, we
prove that, indeed, the multifractal formalism yields a general upper bound of the
spectrum.

3.1. Derivation of the multifractal formalism: The wavelet method.
A multifractal formalism is a formula which 1s expected to yield the spectrum
of singularities of a function from the estimation of ‘global’ quantities which are
numerically computable. The first formula, based on LP norms of the increments
of the function, was proposed by G. Parisi and U. Frisch and in 1985, see [92].
Soon afterwards, A. Arneodo, E. Bacry and J.-F. Muzy proposed an alternative
formula based on the continuous wavelet transform, see [4, 7]. In this section, we
derive a slightly different formula based on the wavelet leaders dy. The advantage
will be that one does not have to assume that the Holder singularities are “cusp-
singularities”; a cusp singularity at z displays a behavior similar to |z — 2¢|%, as
opposed to chirps which display strong oscillations like |z — x¢|®sin(|z — x| ~?),
see [6].

Using heuristic arguments, we now derive this multifractal formalism. We will
form ‘global quantities’ based on the wavelet leaders dy. Indeed, if f is uniformly
Holder, which we assume from now on, Theorem 1 shows that, if bt (x¢) = H, there
exists an infinite number of dyadic cubes A which contain zy (or are adjacent to

such a cube) such that
lim M = H,;
J=+eo \ log(2-7)

which we will write dy ~ 2757, Global quantities which are natural to consider
are the [P-averages of the d) at all scales. In order to keep as much information
as possible on the dy, we don’t restrict the computation to p > 1 or even p > 0;
therefore, if Q2 is a bounded domain of R? and p € R*, let

QL _ o—df 14
Spp=27Y Y &,
AEANQ

where the sum is taken on all wavelet leaders of scale j corresponding to dyadic
cubes localized in Q. The order of magnitude of Sﬁj when j — 400 is estimated
with the help of the scaling function of f on € defined by

log (:5;;) )

log(277)

j—=4oo

(3.1) w?(p) = lim inf (
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which means that Sﬁj is of the order of magnitude of 2797 ()i when Jj — Foo.
More precisely, by definition of w?(p),

V8> 0,30 >0 Y d{2li®)-di < 09l
AEA;NQ
and there exist j, — +oo such that
¥i>03C>0 > djalei®-din > 09=din,
AEA;, NQ

These two conditions can be rewritten as follows: For any é > 0,

J
(3.2) Z Z d’;\Q(w?(p)_dH)j — 400 when J — 400
7=0 )\EA]'OQ
and
(3.3) Z Z dgg(w?(p)—d—é)j <C.
7=0 )\EAJ'OQ

Let xg € R%and ¢ > 0. If hy(xzo) = H, there exists a sequence of dyadic cubes A in
the influence cone at zg such that
(3.4) A| <e and 20-H-97 < g, < 2(=H+3)j

For each xy € € at which the Holder exponent takes the value H, let us pick such a
cube A, and denote by A(H) the set of these cubes and their adjacent neighbours.
The cubes which belong to A(H) therefore constitue an e-covering of Eg. For this
particular subset of dyadic cubes, (3.3) implies that

Z dgg(w?(p)—d—é)j <C,
XEA(H)
and therefore, taking (3.4) into account,
V6 >0, Z || (-7 )+ Hpor+d) < (o,
XEA(H)
thus d?(H) (which denotes the spectrum of singularities of f restricted to §) sat-
isfies
a2(1) < W (p) - d - Hp.
Furthermore, (3.2) implies that, for at least one value of H, which we will denote
by Ho,
Z &2 7= > 090
XEA(Ho)
(because otherwise, when one ‘sums over all values of H’, the corresponding quan-
tity would decrease exponentially). Thus there exists Hy such that
df(Ho) = —w¥ (p) + d + Hop.
Summing up, we see that the spectrum of f restricted to €2 satifies, for any p # 0,
d?(H) < —w?(p) +d+ Hp and 3dH,: d?(Ho) = —w?(p) + d + Hyp;
which can be rewritten as follows:

(3.5) wi(p) = inf(d — d}(H) + pH).
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In order to determine the spectrum on all of B¢ writing R? as a countable union
of bounded domains, we have

de(H) = sup d?(H);
QCR4

and therefore, we have to replace in (3.5) the function w?(p) by

(3.6) wi(p) = inf wi(p).
We thus obtain
(3.7) s (0) = inf(d — dy(H) + pH).

We will show in Section 4.3 that wy(p) (which is defined on R\ {0}) extends to
a concave function on R. Denote by cif(H) the concave hull of d;(H) (i.e. the
smallest concave function larger than dy(H)). Formula (3.7) can be interpreted as
stating that —cif(H) and —wy(p) + d are convex conjugate functions, and each can

therefore be deduced from the other by a Legendre transform. It follows that
(35) dy(H) = inf (Hp—s(p) +d).

Formula (3.8) tells us that we only expect to recover the concave hull of the spec-
trum of singularities from the scaling function. However, it often happens that
d¢(H) actually is a concave function, in which case (3.8) allows us to recover d¢(H)
completely. 'When such is the case,

(3.9) df(H):iIZ}f (Hp—wi(p)+4d),
and we will say that the multifractal formalism is satisfied by f.

3.2. Upper bound of the spectrum of singularities. When p is positive,
the scaling function can be given a functional interpretation. For that, we introduce
the oscillation spaces which are defined by the following condition on the wavelet
expansion.

DEFINITION 15. Let s € R and p > 0; a distribution f belongs to O (R4 if its
wavelet coefficients satisfy
Mo <o

k
and
(3.10) 3C >0 Vj>0 262=9iN g < C
k
Remarks: These function spaces are a particular case of the spaces O;’sl(Rd)

previously considered in [53, 57].
It follows immediately from Definition 15 that, if p > 0, then

wi(p) =sup{s: fe O},

therefore the function wy (p) indicates which O, spaces contain the function f.
One easily checks that the oscillation spaces are Banach spaces if p > 1; they
are complete metric spaces if 0 < p < 1 for the metric defined as follows: Let f
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and g be two functions in O%. The coefficients of f are denoted ¢\ and C} as in
Definition 15, and those of g are denoted ¢y and C}; then
(3.11)

~ . p
d(f.9) =Il f =g llgo~ Z |Cx — Cx|P + sup (Q(SP_d)] Z (SUP |Exr — C>\’|) ) :
- >0 NCA

k

The following result states that the multifractal formalism yields an upper
bound for the spectrum of any function.

THEOREM 2. Let f be a uniformly Holder function. Then

(3.12) dy(H) < it (Hp—ws(p) + ).

First, we consider the case where p is positive. Recall that the sets Gy were

defined in (1.5).

PrOPOSITION 7. Let p > 0;if f is a uniformly Holder function in Oy,

d
(3.13) VHZS—;, dim(Gg) < d+ Hp — sp.

Furthermore, if s — % > 0, then Gg = {§ for any H < 5 — %.

Proof: With regards to the case H < s — %, if fe (’);,

leal < dy < 02707

so that Vao, he(zo) > 5 — %.
Let us now prove the first assertion. Let

Gy ={XA: |da] > 277},
and denote by Nj g the cardinality of G;g. By hypothesis, f € O, so that
20p=d)i 3™ |d,|P < €, and
Q(SP—d)ij g2 i < O

so that N; g < C2ld=sp+HPp)j,
Denote by F}; i the set of cubes A of scale j such that either A € G; 7, or A is
adjacent to a cube of G; 7. Clearly,

Card(Fj ) < 3%Card(Gj ) < 3¢C2Ud=sr+HP)I,
Denote by Fj, = limsup F; i the set of points that belong to an infinite number of
j—4oo
F; g. If 2o ¢ Fg, then there exists jo (= jo(x)) such that, for any j > jo, we have
d;j(zo) < 27H7; thus we can choose C' ( = C(z)) large enough so that

Vi >0, dj(xg) <C27H9

Theorem 1 implies that f € C’gg(xo); so that Gy C Fy.
It remains to bound the dimension of Fg. Let ¢ > 0, and

Jo = inf{y : Vd2—i <e}.
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We choose for e-covering of Fp all the cubes A such that j > jo and A € F; 7.
Clearly,

ZDiam(BA)é < C i Card(F; m) (\/32_‘7)6

J=Jjo

<C Z ld=sp+Hp=38)j
J=Jjo
which is finite if § > d + Hp — sp; hence the first part of the proposition holds.

Let us now check that the last point of the proposition follows. If xy € Fy,
hi(zo) = H, and VH' > H, »g € Gg; so that Ex C Gg+. Let p > 0; by definition

of wy(p) we have Ve > 0, f € (’)Z(;Ul’;gp)_ﬁ)/p, so that

VH' > H, Ve >0 d(H) =dim(Eg) < dim(Gg) <d+ H'p—w;(p) + ¢,
and thus the spectrum of f restricted on any bounded set €2 satisfies
d*(H) <d+Hp—w;(p).
Since this upper bound is valid for all p > 0, (3.12) follows (with the infimum taken
only on R¥).

We consider now the case where p is negative. In this case, we will obtain a
result which is stronger than Theorem 2 since it yields a bound for the packing
dimension of the Holder singularities.

ProPosITION 8. Let p < 0;1if f € Oy, the packing dimension of By is bounded
by d — sp+ Hp.

Note that, in contradistinction with the case p > 0, we do not have to make
any uniform regularity assumption here.

Proof: Let § > 0 and J such that 277 < §. If f € CH(zg), there exists A > 0
such that

Vi>J,  sup  fean| < A27T
)\’C)\j(xg)
so that, since p < 0,
P
(3.14) sup ex| | > AP2THPI
)\’C)\j(xg)
Denote by €24 the set of points # where (3.14) holds for any j > J. Clearly,
BH C U QAa
A>0

where the union can be written as a countable union. Since f € Oy, there are at

most C'AP2(4=sp+Hp+e)J cybes X satisfying (3.14), so that the upper box dimension
of each set €24 is bounded by d — sp + Hp. The proposition follows by countable
union, and the upper bound (3.12) also follows (with the infimum taken on R7);
therefore (3.12) is completely proved.



WAVELET TECHNIQUES IN MULTIFRACTAL ANALYSIS 29

3.3. Derivation of the multifractal formalism: The oscillation method.
In order to derive a multifractal formalism, we started from (2.23); however, one
can alternatively start from the characterization of pointwise regularity based on
local oscillations (2.24): If hy(xg) = H, there exists an infinite number of balls
B(xq, €;) such that, for n large enough,

log (|08} (B(xo, ¢;))])

=H.
€;—0 log(e;)

In this formulation, the “global” quantities which are natural to consider are

(3.15) T =€V N |0SH(B(, 3Vde))
lE€Z N

(we use balls of radius 3V/de so that there is enough overlapping, but the precise
value 3 is not important). Let

log | > |0S}(B(,3Vde))
log (Tﬁg leeZ 4N

log(e) ) - d—|—1116r1i>10nf

log(¢)

The argument we developed using the Tp(,lj can be reproduced. In the present
setting, 1t leads to the following formulation of the multifractal formalism:

(3.16) d(H) = inf (Hp— vy(p) + d).
where
vs(p) = inf v (p).
When p is positive, the function v¢(p) also has a function space interpretation.

DEFINITION 16. Let p > 0 and s € R. A function f belongs to V; (R4 if
f € L (RY and if, for n > [s],

(3.17) 3C >0 Ve>0 =7 > |0S}(B(I,3Vde))|" < C.
leeZd
Note that
(3.18) vi(p) = supls : f € VP (RY)}.

The function v (p) indicates to which V, spaces the function f belongs locally.

Before considering the problem of the validity of the multifractal formalism,
one should first check that its two formulations using either wavelets or oscillations
lead to the same formula. There exists only a partial result in this direction which
concerns positive values of p. We will show that, if f is uniformly Holder, for any
p >0,

wy(p) = vs(p).-

This result is a consequence of the following theorem.
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THEOREM 3. The following imbeddings hold
(3.19) Ye>0, Vp>0 CNVHTIP sy Op = Vo,

thus, if f: RY — R is uniformly Holder, then the p-oscillation exponent of f is
given by

wi(p) =sup{s: f€ (’);/p’o}

(3:20) tog [ 37 sup fexrf
xeA; M EX
= lim sup .
j=r+oo Jlog2

Let us stress the fact that this result deals only with the case p > 0. We do not
know if the scaling function wy(p) can be characterized by local oscillations when
p 18 negative.

3.4. Proof of Theorem 3. We assume that we use compactly supported
wavelets. (The general case will follow afterwards using Theorem 4 which states
that the scaling function is independent of the wavelet basis). Coming back to the
comparison of wavelet coefficients and oscillations performed in Section 2.5, one
sees that the function 6, (z1)¥?(x5) ... ¥¥(x4) which appears in (2.22) is compactly
supported, say in [—A, A]%. Let By = B(k?‘j,A\/EQ_j). It follows from (2.22) that
lex] < C - OS%(By); thus, if ' C A,

lex| <C-OST(By) < C-0S%(By);
so that d < - OS¥(B,). Therefore,
sp—d)j sp—d)j n P
9lsp=d)j Z &b < ¢2lsp=di Z [OSf(BA)] )
AEA; AEA;

In order to obtain a converse estimate, we first assume that f is compactly
supported. We will bound the oscillations of each component f;/ on the ball B; by

S,
AEA;
If 7/ > 7, then

Jir = Z e

NEA
Using the localization of the wavelets, it follows that

0S%,(Bx) <C || flleemy< € sup  fex].
’ CANBy 20

In particular, since f € C¢(R9), it follows that

(3.21) 0S},(B)) < 279"

Let dy = sup  sup |c,|. We have
CANu#d p' Cp

(3.22) 08} ,(By) < Cdy.
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Since d is a supremum of dy on at most (C' + 2)? cubes, it follows that
(3.23) ST E<(CHT D .
AEA; AEA;
If j/ < j, applying Taylor’s formula to A} f;/, it follows that, if © and « +nh belong
to B)\,
|ALfir] < ClAI™ sup [0% f; (x)],
r€EB)

where the supremum bears on the |a| = n. But, if |a| = n,

0% F;0(2)] < C2" sup exi].
CA'NBy#0

Since |h| < €277, it follows that

0S’ (By) < c2~ni=i") sup e
’ CA'NBx 20

Therefore, if M denotes the dyadic cube of scale j' which includes A,
(3.24) 08}, (By) < C27"0=0d, 0.

Since f = Z [ir, we have 0S¥ (B,) < Z OS?j, (By). Using (3.21), it follows
ji=1 jl=—1
that
Y 08}, (By) < €27,
j=3?
and using (3.22),we get

j2

Y 0S8}, (By) < Cj%dy.
i'=i
Therefore
j—1
OS}(B)) < ) OS} (B)) + Cjdy+C279 .

ji=—1
Since
n P n
Vp > 0, (Z ai) < (nsupa;)’ <n? Z(ai)p,
i=1 i=1
1t follows that

(0S}7(Bx))" < C(j +3) Z_: (087, (B + 7 (dyyp + 277"

jl==1

Thus, using (3.24), it follows that

j—1
(OS?(B)\))p SC(]+3) Z 2—”P(j—j’) (j)\jl)p_i_ij(Ci)\)P_i_Q—epjz

jl==1
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~ \P o
When we sum on A, each term (d}\j/) appears 24777 times, so that

> (08}(By)! <

AEA;

-1

C(j+3) Z 9(d=np)(j—j) Z (J}\jl)p +j2p Z (jA)p + CdeQ—epjz

jl=—1 XEA XEA;

(in the derivation of the last term we use the fact that f is compactly supported,
so that the sum bears on at most C2% dyadic cubes of scale j). Using (3.23), we
can replace dy by dy. By hypothesis,

Vi Y () < Caltrel
NEA
so that

> (08}(By)

AEA;

j—1
<e(j+3) Z 9= (np=d)i=i")g(d=sp+e)i’ | j2pold=spte)i | crodig—epi®
jl==1
which is bounded by o(d=sp+26)i" if py ig picked large enough so that np—d > sp—d,
le. n>s.

The result follows for any function f (non necessarily compactly supported),
using a partition of unity: Let 6 be a C°° compactly supported function, satisfying

Z O(x — k) = 1. We apply the result to each fi(x) = f(x)0(x — k) and use

keD
Z()O;N Z Il fe
k

A similar argument also works for the V.
Let us now check that the Z |OS?(B(/,L)\,A/\)) |p are independent of the (large
enough) constant A. We will check that, if

A; = Z |0S}(31)["
AEA;

I/

P
o

and
By =Y |ost(AN
AEA;
where A > 3, then
lim inf 128U e 108(Bs)
j—=+oo 10g(2_]) j—=+oo 10g(2_])
Of course, A; < B;. Let [ be such that

1
52’<A§2’.
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Then
By < Yy ospn[" <32t > josieN)[
AEA; NEA;
because each cube of scale j is contained in a cube 3\, where X is a dyadic cube
of scale [ — j, and each cube of this type contains at most 392% cubes of scale j.
In order to end the proof of Theorem 3, we have to check that

= N OSTH(B(1,3Vde)) [P < €207~ N " |OST(ANP,
lgend XEA;
wher we can pick any A > 3. we pick j such that
279 <e< 2277,

and A large enough so that any ball B(({,3+/de) is entirely included in a cube A\
(A € Aj). The estimate follows.

3.5. Notes. We mentioned that the multifractal formalism may not yield the
correct result when applied to chirps; this problem is discussed in [6] and [86]. A
chirp at zy displays strong oscillations near z similar to those of

1
(S S -
|z — ¢ Sm<|x—xo|@)'

Their study was initiated by P. Tchamitchian and B. Torresani in [98], see also
[24]; there exist two slightly different ways to model such such a behavior, either
mathematical chirps, see [60, 88], or oscillating singularities, see [6, 8]. In both
cases, the couple (a, ) is used to label either chirps or oscillating singularities.
Therefore, one can associate to such singularities a new spectrum d(e, 3) indexed by
two parameters which is, as expected, the Hausdorff dimension of these singularities.
Such two-variables spectra have been determined either for stochastic processes
(random wavelet series), see [9]), or for quasi-all functions in Besov or Sobolev
spaces, see [86].

The justification of the multifractal formalism that we proposed is an adapta-
tion of the one initially introduced by G. Parisi and U. Frisch in [92] (see also [39]).
One difference is that the “local quantities” which were their starting point differ
from the T}, .: Let

S, (1) = / P+ 1) — Fa)P d;

the corresponding scaling function used in the former formalism is
&) = suplr: 15,001 < CH7Y.

Recall that, if

1
(3.25) d (— - 1) <s <1,
p +

the Besov space B,'? can be characterized by the condition
t ar g
[ s (fuesn-sora) S <e
0 0<|Al<t 4
see [100]. This characterization clearly implies that the corresponding scaling func-
tion is

(3.26) Cr(p) =sup{s: f€ B;,/l’;f},



34 STEPHANE JAFFARD

at least as long as d (% - 1) < szgp) < 1 (we can choose any ¢ > 0); in general,
+

one should rather take (3.26) as a definition of the scaling function. One easily
checks that (; is also concave. The corresponding multifractal formalism asserts
that

(3.27) 4y () = inf (Hp—Gr(p) +d)

We will show in the following section (Proposition 9) that, if s > %, O, = By™.
It follows that, when the infimum in (3.27) is attained for values of p such that
¢(p) > d, this formula coincides with (3.8). However, the formulation of the mul-
tifractal formalism based on oscillation spaces has a wider range of validity, see
[6]. In the applications, one prefers to use wavelet coefficients in the formulation
of the multifractal formalism, rather than increments, which are numerically less
stable; indeed, increments (or oscillations) are very sensitive to noise; by contrast,
since the wavelet coefficients are averages (integrals against smooth functions), they
are numerically much less sensitive to noise. Note also that the extension of the
corresponding scaling function (¢ (p) to p < 0 has no theoretical backing, whereas
we will see in the next section that the scaling function based on oscillation spaces
extends in a ‘canonical’ way to p < 0 (see Section 4.2). Wavelet methods for the
numerical computation of spectra of singularities were developed by A. Arneodo,
E. Bacry, J.-F. Muzy and their collaborators, see [4, 5, 7].

The validity of the multifractal formalism for functions has been the subject of
many papers. We won’t give a detailed review of this topic; however, let us just
mention that this validity has been proved under assumptions of selfsimilarity for
the function, either exact [50], approximate [3, 20] or statistical [54]. These results
followed a similar line of research for multifractal measures. We will see in Section
5 how generic results of validity can be obtained.

Assuming that the multifractal formalism holds, a function f will be monofractal
if and only if its scaling function is affine. This led to a confusion and many
misunderstandings between mathematicians and signal processers: In the applied
community, a multifractal function is usually defined as a function f whose scaling
function (either wy or (¢) is not an affine function. Needless to say, such a definition
by the negative insures that most signals met turn out to be multifractal... This
partly explains the flourishing literature on multifractality which has spread to a
large numbers of applied fields.

4. Properties of the scaling function

Our purpose in this section is to derive some properties of the scaling function
that have been used in the derivation of the multifractal formalism. The multifractal
formalism given by (3.9) relates the scaling function (which has been constructed
with the help of wavelet coefficients) to the spectrum of singularities (which has
been defined without any reference to a particular wavelet basis). Therefore, an
obvious consistency requirement is to check that the scaling function is independent
of the choice of the wavelet basis.

THEOREM 4. Let f € L™. If the wavelets used belong to the Schwartz class,
then, for any p # 0, the scaling function of f is independent of the wavelet basis
chosen.
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The proof of Theorem 4 will be split into two cases, depending on whether
p is positive or negative. When p is positive, we already saw that the scaling
function indicates which oscillation spaces f belongs to. We will show in Section
4.1 that their definition is independent of the wavelet basis chosen, thus proving
Theorem 4 when p is positive. The case p < 0 will be examined in the Section 4.2.
The function space interpretation of the scaling function is important for another
reason: One cannot expect (3.8) or (3.9) to hold for any function; indeed, it is
very easy to construct counterexamples to the multifractal formalism; the central
question of multifractal analysis is to determine the domain of validity of (3.9). Up
to now, most results concerned specific functions or random processes. A way to see
how general results of validity can be obtained is to remark that, since the scaling
function for p > 0 implies that f belongs to a certain intersection of oscillation
spaces, we can wonder if there is a “generic” result of multifractality that would
hold for ‘most’ functions of this function space. We will address this problem in
Section 5.

4.1. Oscillation spaces. Oscillation spaces were introduced in Definition 15;
they are closely related to Besov spaces. Let us recall the definition of Besov
spaces. If s is large enough, Besov spaces can be defined by conditions on the finite
differences AM f already considered in Section 2.5: Let p, ¢ and s be such that
0<p§—|—oo,0<q§—|—ooand5>d(%—1)+;thenfEB;;’q if f € LP and if, for
M > s,

dt

t
4.1 / sup AMpy | <C.
(4.1) 0 0<|h|§t||( Il e <

The following wavelet characterization (which can be taken as a definition) has
been proved in [87].

DEFINITION 17. Let s € R and p,¢ > 0. A distribution f belongs to B4 if
the sequence c¢; belongs to [P and if

(4.2) Ny

520 \ ki

q/p

p
cAQ(s_%)]‘ < 4o00.

Remark: This characterization is of course reminiscent of (3.10); indeed, if
q=+oo, f € By™ if () €17 and if

(4.3) i 26Dy ey P < oo,
ki
Since |ex| < |dx], it follows that O < By,

When p > 1, Besov spaces are also closely related with the Sobolev spaces.

DEFINITION 18. Let s > 0 and p > 1. A function f belongs to the Sobolev
space LP*(RY) if f € LP and if (Id — A)s/z f € P, where the operator (Id — A)*/?
is defined as follows: g = (Id — A)*/?f means that

&) = (L+ )7 £©)

(the function (1 + |€]?)*/? being C*° with polynomial increase, (1 + |€|2)5/2f(€) is
well defined if f is a tempered distribution).
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This definition amounts to say that f and its fractional derivatives of order at
most s belong to L see [87]. If s > 0 and p > 1, then

s,1 p,s §,00
Byt = LP" — B™.
Thus Bj»? is very close to LP*. The following proposition shows that oscillation
and Besov spaces sometimes coincide.

PrOPOSITION 9. If 5 > %, then OF = B,

Proof of Proposition 9: We already saw that O, < B;°°. In order to prove

the converse embedding, note that d5 = sup |ex/| can be bounded by Z Z lexr]?
ATCA e
J'2iACA
(where the sum over X is taken on the subcubes of A of scale j'), so that

Zdi;\g(sp—d)j < ZZ Z e[ 20sP =D
k

k g'2iACA

— Z Z |C>\,|p2(sp—d)j

J'2i K

(44) = Z Z |C>\I|p2(8p—d)j12—(sp—d)(jl—j).

J'2i k'

If s > %, and f € B, then Z |c>\/|p2(5p_d)jl < (' (4.4) is therefore bounded;
k:/
hence B> — O;.

The following embeddings will be useful in order to derive the properties of the
scaling function.

) }f81§82,0;2‘—>0;1;
(2) itg>p, 050y 71,

3) If f is compactly supported, then

( pactly supported,

(4.5) f€e0, = VYe<p, [€0O;.
Remark: The third embedding implies that V¢ < p, O

ProposiTION 10. (1
d

s s
p,loc — Oq,loc'

Proof of Proposition 10: The first embedding is straightforward; as regards
to the second one, if f € O}, for any j, the sequences 2(5_%)jd>\ are bounded in
[P uniformly in j, therefore, they are also bounded in %, uniformly in j, if ¢ > p.
Since

2(5_%)jd>\ _ 2((5_%+§)_§)jd>\,

the second embedding is proved. As regards to the third one, if f i1s compactly
supported, and if the wavelets are also compactly supported, then, at each scale j,
at most C2% of the dy do not vanish. Let ¢ < p; applying Hélder’s inequality to
the sequence d{, and to the sequence identically equal to 1 if dy # 0, and vanishing
elsewhere, we obtain

> g <l dd {lpyqll 1l
AEA;
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where r is the exponent conjugate to p/q. This inequality implies that

q/p

S| Y da] (e
AEA; AEA;
Therefore
a/p
Z Q(Sq—d)jdg\ <C Z Q(SP—d)jdz;\
AEA; AEA;
So that f € O, = f € O;.

The spaces Q7 are defined by conditions on the wavelet coefficients, therefore
the first point to check is that this definition is independent of the wavelet ba-
sis chosen. In practice, one usually checks a stronger (but simpler) requirement
which implies that the condition considered has some additional stability; indeed,
the matrix of the operator which maps an orthonormal wavelet basis onto another
orthonormal wavelet basis is invariant under the action of infinite matrices which
belong to algebras M” that will be defined below; therefore, one can check that
Condition (3.10) is also invariant under this action, which is the purpose of Propo-
sition 11 below; these algebras are defined as follows:

DEFINITION 19. An infinite matrix A(A, A’) indexed by the dyadic cubes be-
longs to M7 if
C 2= E+3G-i"
AN < — .
AR, )L‘ﬂ+%j—fﬁﬂ1+?MMfMQAXAUVH

Matrices of operators which map a smooth wavelet basis onto another one
belong to these algebras, and more generally matrices (on wavelet bases) of pseu-
dodifferential operators of order 0, such as the Hilbert transform in dimension 1, or
the Riesz transforms in higher dimensions, belong to these algebras, see [87]. We
denote by Op(M?) the space of operators whose matrix on a wavelet basis belongs

to M7,

ProPosITION 11. If v > |s|, the operators which belong to Op(M?) are con-
tinuous on O (R4,

Remark: Since Op(M?7) is an algebra, this result clearly implies that the def-
inition of oscillation spaces is independent of the (smooth enough) wavelet basis
chosen.

Proof of Proposition 11: Recall that we write A = A(¢, j, k), A = A&, j', k'),...
see Section 2.3. Let exr = >, A(X, X" )exr and

9—($4+7)1i -4l

T AE G =)D+ 2T dist(h, V)T

The ey satisfy [ex/| < O3, Cwyian|exn|; assume that the ¢y satisfy (3.10); we
want to bound

P
2(sp—d)j Z sup |6>\/|p§02(5p_d)j Z sup (ZWAU)\”|C>‘”|) .

7 7
|A|=2-3 A CA IA|=2-3 2 CA o
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We split the sum over A into two terms, depending on whether A” C 3Aor X' ¢ 3.
First case: X' C 3\. Then,

Z w>\/7>\//|(})\//| S ( sup |C)\// ) Z(,J)\/ Al < C sup (|C)\//|) :

>\”C3>\ )\II >\//C3>\
therefore
P
E Sup ( E w>\17>\11|c>\11|) < C E Sup |C>\//
IA|=2—7 ' C* \arcaa |A|=2-i A C3A

<C3 E sup |exn|P.
|AJ=2-i+1 ATCA

Second case: X' ¢ 3\, Let us first prove that, in this case,
(46) WX S C(.J)\y)\//.

In order to prove (4.6), let us first assume that 7/ < j. In that case, dist(A', A”) >
tdist(A, X') and [j' — j”| < |j — j”]; (4.6) follows directly from these two results.
If 7 > j, then, since A’ C A
C 9=+l =i"
(14 (5" — j"))dist(X, N7)d4r 20t (73 7) (d+)
We now separate two cases:
If j < j" <, then

Wi <

C 2= (5+li=i"l
(14 (5/ — j")2)dist(A, X7)d+7 23" (d+7) 9= (5+7) (" =)
C 9= E+nli-i"
T (L4 (5 = 7)) 280" D dist(A, N7+ 2(d4)
C 2 (306" =3)

= T G = 7)) dist(h, X7yl
< Cuwy pi.

Wi <

We finally consider the case j < j* < j”. Then
C 2= (3+Nli-5"]

1 H <
NN (G = 7)) dist (A7) 2 () 2= (BT
C 2= (E+)li=5"]
<
T (L4 (= )22 500 dist (A, N7y 20dti
< Cwy ar.
It follows from (4.6) that
b P
Z sup Z (.d)\ly)\ll|(,')\ll| S C Z (ZWA’A”|C>\”|)
Iri=2-i M \wirzaa =i \57

S CSUp Z |C>\//|p

;
J |)\’|:2_jl

(the last inequality holds by continuity of the operators in Op(M7) on the Besov
spaces B,°, see [87]); hence Proposition 11 follows.
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4.2. Oscillation spaces for p < 0. The multifractal formalism asserts that
the spectrum of singularities of a function f can be deduced from its scaling function
w¢(p) by a Legendre transform. We saw that, if p is positive, the scaling function
wg(p) determines which oscillation spaces f belongs to. In particular, this interpre-
tation shows that w¢(p) is independent of the particular wavelet basis chosen. Now
we want to determine if this interpretation can be extended to negative values of p:
Can one define O} spaces for p negative? And, if so, 1s the definition independent
of the wavelet basis chosen? We will need here a different requirement than the one
used in Proposition 11.

DEFINITION 20. An infinite matrix A(A, \) is quasidiagonal if A is invertible,
and if A and A~! belong to M? for any v > 0.

The matrix of an operator which maps a ' orthonormal wavelet basis onto
another C'° orthonormal wavelet basis is quasidiagonal, see [87]. Therefore, in
order to check that a condition defined on the wavelet coefficients is independent of
the wavelet basis (in the Schwartz class) used, one can check the stronger property
that it is invariant under the action of quasidiagonal matrices.

DEFINITION 21. Let C' = {ca}rea be a collection of coefficients indexed by the
dyadic cubes. A property P is robust if the following condition holds: If P(C')
holds then, for any quasidiagonal operator M, P(MC') holds.

Similarly, we will say that a function space, which is defined by conditions on
the wavelet coefficients, is robust if this definition is independent of the (smooth
enough) wavelet basis which is chosen.

Let us now motivate the formulation of the definition of oscillation spaces that
we will adopt for p < 0. Consider Condition (3.10) for p > 0. As we already
remarked, applying this condition for j = 0, we obtain that, for any j* > 0, |exs| < C
so that f € B%®. Conversely the condition f € B%® is necessary to make sure
that the suprema in (3.10) are finite, therefore we include this global regularity
condition in the definition when p < 0.

Since we are interested in local properties of functions, we will first define these
spaces for periodic functions (or distributions). We will use periodized wavelets
defined as follows. The functions

> W20z —1) — k], >0, ke{0,..., 2 —1}7,

lez
together with the function ©Q(z) = 1 form an orthonormal basis of the space of
square integrable periodic functions. We keep the same notations as before for

periodic wavelets and the corresponding periodic wavelet coefficients, which will
bring no confusion.

DEFINITION 22. Let p < 0, and s € R. A periodic distribution f belongs to
O, if the two following conditions hold:

e f belongs to B%™,
o for any € > 0, there exists exists C'(¢) and J(¢) such that

(4.7) Vi>J(e) Y 20r=digh < O(e)2.
k
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Definition 22 does not define a vector space (the d are infinite for f = 0). Its
remarkable property is that it is independent of the orthonormal wavelet basis (in
the Schwartz class) which is chosen.

THEOREM 5. For any s € R and for any p < 0, the space O is robust.

Let ¢ denote a collection of wavelet coefficients satisfying |ex| < C. Let (¢,)
be a given orthonormal wavelet basis in the Schwartz class. We denote by f the
distribution " exv,. If A = (A(A, X)) is an infinite matrix indexed by the dyadic

cubes, ¢ will denote the distribution whose wavelet coefficients are
€\ = Z A(/\, /\/)C)\/
AI

(whenever these sums converge), and 7' will denote the operator whose matrix in
the basis %, 1s A; thus 7" maps f onto g.

In order to prove Theorem b5, some preliminary remarks will be useful. We
start by recalling a classical lemma.

LEMMA 3. Let v > |a| and A € M?. There exists a constant C(d) (which
depends only on the dimension d) such that

Vik |l <C27 = VA |en|<Cd) || A, C27%.

This lemma expresses the fact that operators whose matrix in a wavelet basis
belongs to M7 are continuous on C% if |a| < 7. Tt is a straightforward consequence
of Schur’s lemma (see [87]).

DEFINITION 23. Let ¢ > 0 and X be a dyadic cube. The ¢-neighbourhood of
A (which we denote by N€(X')) is the set of dyadic cubes A such that

lj—=J'1<ef

k k' N
- 2ejio—j
2 o7 <2 277,

Let X be a fixed dyadic cube, and let j be such that |j — j'| < ¢j’. The number
of dyadic cubes A of size 277 which belong to the e-neighbourhood of A’ is bounded
by
(4.8) (271297 9=i"yd,

Note also that, if A does not belong to the e-neighbourhood of A\ and if v > 1/€?,
then

9—(2y+d+1)li=5’|
(1 4 2i0f(3) dist(X, A))2v+d+1

(4.9) way (N, N) = <wy (X, N2

Furthermore, since f € Bg’oo, leas] < Cy; thus, if ¥ > 2/¢, it follows from Lemma 3
that

(4.10) S AN N)en | < Cd) || Ally G127
NEN<()
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Now, we can prove Theorem 5. Suppose that the wavelet coefficients ¢, of f
satisfy (4.7) and that A is quasidiagonal. First, we notice that, since

Z 2(sp—d)jd1>’\ < C(e)29,
k

1t follows that
VA, 20P=digh < ¢

so that, since p < 0,
(4.11) VA, dy > C(e)/ro-(s=dlr)igeilr,
Let A be a given dyadic cube. There exists A’ C A such that

1
(412) |C)\/| Z §d)\

For each A we pick one such X which we denote by A(A). We will first prove the
following lemma.
LEMMA 4. Suppose that f belongs to O, and let € such that
1
4.13 l<e< ——F+F7——.
) = 30—/l D)
There exists C'(€) > 0 and J(e, A) such that for any j > J(¢) and for any A such
that [A| =277,
dx
IN" e NS (N (N)) : lexn| > —————.
4C(d) [ A= |

We will denote this cube by A”(A).

Proof of Lemma 4: If Lemma 4 were wrong, all cubes A € N¢(X (X)) would

satisfy
d
|6)\//| S %
AC(d) || A=
Let
e%\,, = exnr if M e NE(/\/(/\))
=0 otherwise,
€3, = exn—eln, (c) = A71(el) and (¢3) = A=1(e%). Since A1 is almost diagonal,
applying Lemma 3, we obtain

d
(4.14) YA Jeha] < IA'

We have Ci'(x) = Z ATH (N (A), A)en,. Since f € Bg’oo and A is almost
ALEN (A (X))
diagonal, Lemma 3 implies that
lex, ] < CUNCW@) [ A

(where 2771 is the width of A;); (4.10) implies that, if v > 2/e,

CRon S C@* | AT LT AT Cn2 /e,
Since € is such that 1/(2¢) > |s — d/p| + 1, using (4.11) and j' > j, we obtain

9= (/260" < 9=(s+1=d/p)i < g, C=1/P,
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so that

Cd? || A~V LA C(f e
|&wﬂ§( (d)” | O%n n<>)®2]p.

Thus, since 1/(2¢) > 1,
SIPAY -1
(4.15) kaﬂg@ﬁcwnA mwwcm)h

Ci/r

Choosing j large enough makes the term between parentheses arbitrarily small;
thus, since cyi(y) = ci,(A) + Ci'(x)’ (4.14) together with (4.15) contradicts (4.12).

Let us come back to the proof of Theorem 5. Let e satisfying (4.13) and
Jj > J(e, A), where J(e, A) is as in Lemma 4; finally, let [ = [j(1 — 3¢)]. For each
cube p of size 27! there exists A C p such that p also contains the cube A(})
suplied by Lemma 4. We denote these two subcubes A = A(u) and A”(A) = Ay (p).
Denote by 277t the width of A’()). Finally, let

R(/,L) = )\Sl}lcp |6)\//| .
I

We have

R(p) = Jex, o

so that, using Lemma 4,

2251) le p <225pd M )|P
A) D 2=ty
u

(where the sums are taken on all dyadic cubes y of width 2771). Since
j el L+ [5e),
this quantity is bounded by

+[6€l
o S

(where |A| = 279)

1+[6el]
A) Z degw d)jo(=sp+d)(j-1)
X

7=l

Thus
I+[6€l]

ZQ(SP_d)lR(N)p < C(A) 26| sptdel Z ZQ sp—d) ]dp
I
Since € can be chosen arbitrarily small, Theorem 5 follows.

We have proved that the definition of the spaces O, for p < 0 is independent
of the wavelet basis chosen. These spaces are defined for periodic functions (or
distributions). If f is defined on R¢ we adopt the following definition.
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DeFINITION 24. If p < 0, a distribution f belongs to (’); toe If f € BL™ and if

its wavelet coefficients satisfy

VK compact, Ve > 0, 2(sp=4=)j Z |[drP < C(K,e€).
AEA;NK

The proof that this definition is robust is the same as in the periodic case; it
follows in particular that the definition of wy(p) is robust for p < 0.

4.3. Concavity of the scaling function. We will now prove that the func-
tion wy, which is defined on R*, can be extended on IR into a concave function,
and we will also establish some additional properties. These results are expressed
and proved more easily using an auxilliary function, the oscillation exponent s;(p'),
defined as follows.

DEFINITION 25. Let p’ # 0. The oscillation exponent of f is defined by
1
) =or ().

Coming back to the definition of wy(p), it is clear that
if p'€ (0,400 sp(p) =sup{s: fEOI, .}
DEeFINITION 26. The semi-local Holder exponent of f is
(4.16) Hy =sup{a: fely,.}.

THEOREM 6. Let f € L°°; the oscillation exponent s;(p’) is a concave function
on R¥; therefore, it is right and left differentiable at every point. Its right and left
derivatives belong to L™ and satisfy

Vp' € (0,400, (s7)r(p') <d and (s})i(p) < d

Furthermore, s¢(p’) is increasing on R¥.

The scaling function wy(p) can be extended on R into a concave and increasing
function; its derivative w} is positive and decreasing, and satisfies
(4.17) pl}inoo w} (p) = Hy.

The fact that s;(p’) is increasing on R* is a direct consequence of the third
statement of Proposition 10.

In order to prove that w; is concave on R, we will first prove that w; is concave
on Rt and on R™. Two cases can then occur: Either ws(p) = —oco on R~ or
wy(p) extends continuously at 0, and (wf)’,(0) > (wy)’,(0); in both cases, one can
conclude that wy is concave on R. The concavity of wy on R* will follow from the
concavity of s;; in order to prove it, we will need the following inequality which
follows directly from Holder’s inequality. If 0 < p < r < ¢, and if (dj) is a sequence
of real numbers,

(4.18) (S1ar) " < (1) (3 1)

where « 1s defined by

(1-a)/q

1 -
(4.19) e
rp 4

LEMMA 5. The functions s; and w; are concave on R,
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Proof: Let p' =1/p, ¢' = 1/q and ' = 1/r. By definition of s;(p') and s¢(¢'),
Ve > 0, 3C' > 0 such that, for j large enough,

de <2d]2 psy(p )26] and qu <2d]2 gss(g )26]
A A

Zdr (2 pss(p')J )w/p (Q—qu(q')j)(l_a)r/q gld+e)i

By definition of sf(r ), there exists a sequence j, — oo such that

Z a5 > 9=rss(ringld=e)in.
|)\|:2_jn

Therefore

1t follows that
rsp(r') +e> arsi(p’) + (1 — a)rss(¢') — e

Since this inequality holds for any € > 0, and since (4.19) can be rewritten
M= ap + (1-a),
we actually proved that
Va €]0,1[ if " =ap’+ (1 —a)¢, then s¢(r') > as;(p') + (1 — a)se(q');

which means that s;(p’) is concave. But a function is concave if and only if its

second derivative (in the sense of distributions) is negative. Since s (p') = p’wf( L,

then s7(p) = 7 1)2wf( 7), therefore wY is a negative measure, and wy is concave on

RT.
LEMMA 6. The functions s; and w; are concave on R™.

Proof: Let p, ¢, » > 0 be such that

l_a 11—«

r.p q

. .
applying (4.18) to the sequences T with exponents —p, —q et —r, we get
k

St > (i)™ ()"

() som()2 ) 252

so that, since —r > 0,

5 (1) > asy (;) +(1— a)sy G)

and s; is concave on R™. It follows as before that w; is also concave on R™.

and therefore

We will now prove the concavity of wy on R.

First case: YA > 0, 3Q2 bounded and A,, € Q such that
dy, < 2= Aln,
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Then, if p < 0,
Dl =27

AEALND
so that
—wi(p) > —Ap

ie. w?(p) < Ap. Since wy(p) = i%fw?(p), it follows that

VA>0, wi(p) < Ap;

so that wy(p) = —oco Vp < 0.

Second case: JA YA, dy > 2747, We will first prove that w; is continuous
at 0. Since the function f is uniformly Holder, it follows that dy < 1 for j large
enough. Assume that p > 0; for any bounded 2,

279 N | <G
AEA;NQ

so that wy(p) > 0. On the other hand, it follows from the upper bound VA, dy >
2-47 that

279 N |dafr > 274
AEA,ND

so that wy(p) < Ap and therefore lim wy(p) = 0.
p—0t

By the same argument, we get that, if p < 0, wy(p) < 0 and we(p) > Ap.
therefore w; can be extended at 0 into a continuous function satisfying

wr (0) =0.
Let us now prove that (wy)},(0) > (wy);(0). Let p > 0and ¢ < 0. Let r = b—9q
—q
and r = £~ q; r and 7’ are positive and conjugate. Let w = TP et Q be a

pP—q
regular bounded domain. Since no dy vanishes, applying Holder’s inequality, we
obtain

2 Yeard(A;NQ) =274 D" (dy)* (di)
A

AEA;NQ

1/r!

< (o Swn) " (2 2 (%)MI)
= (o an) " e

Since Card(A; N Q) = 249V ol(Q) + o(2%), it follows that

arlp) | wila)
r o=

since r = p/w and 1 = —¢/w, therefore

wy(p)  wylg)
p q

<0.
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If p— 0 and ¢ — 0, it follows that (wy)’,(0) — (wf)’g(O) <0.
Let us now prove the upper bound for s%;. By definition of s¢(p’),
Vs < Sf(p/)’ f € Oi/p”
therefore (using the second embedding between oscillation spaces stated in Propo-
sition 10)
. / / s—dp'+dq' .
lf q<pa feol/ql )
thus, by definition of s¢(¢'),
si(qg') > s—dp +dq.
Therefore
splq') > s (p') — dp’ + dd’,
which can be rewritten
sr(p') — s¢(¢)
—— < d;
r—q
hence the upper bound on the right and left derivatives of 5}.
Let us now prove that w¢(p) is non-decreasing. Since

- =5 (5) -5 ;)

we only have to prove that
VP >0 s (p) —p'si(p') > 0.

At p’ = 0, the inequality holds because f is uniformly Holder, so that s;(0) > 0,

and, on the other hand, s’ is bounded in a neighbourhood of 0; furthermore, the
derivative of sy (p') —10’3;c (p") is —p's" (p) which is nonnegative. Since wy is concave
on IR, if it is increasing on R*, it must also be increasing on R~. Therefore, it is

increasing on R.

We checked that w} is nonnegative. Since w7 is nonnegative, it follows that w’

is nondecreasing; therefore, it has a limit when p — 4o0. Since s¢ is bounded in
a neighbourhood of 0, (4.20) implies that

. PR
lim ' (p) _gg%sf(p).

p——+oo
Let 54(0) = ;i_rg(l) s¢(p); if s < Hy, then, for any bounded Q, f € C*(Q) so that, if

Q' is such that Q' C Q,
sup  Jew| < c27s"

MNEANQ!
Therefore

9(sp—d)j Z dy? < o0,

AEA;NQY
so that sf(%) > s, and s¢(0) > Hy.
Conversely, if s > Hy, 3Q bounded and j, — +o00c such that

sup Jea] > 4,274
AEA;, NQ



WAVELET TECHNIQUES IN MULTIFRACTAL ANALYSIS a7
with A;, — oo; therefore,

(s'p—d)jn P (s'p—d—sp)jn AP
2 Y <2 A3,
AEA;, NSV

which tends to 400 if ’p—d—sp = 0, hence if s’ = %—1—5. Therefore sf(%) < 5—1—%
Vs > Hy. Letting p — +oo, it follows that s;(0) < Hy; hence (4.20) holds.

4.4. Notes. The problem of finding a correct definition for the scaling function
when p is negative has attracted a lot of attention among physicists, especially in
the context of fully developed turbulence, see for instance [7, 25, 90, 97] where
possible extensions of the scaling function for p < 0 are proposed. Up to now,
mathematically, the scaling function was not defined in terms of oscillation spaces
O;, but in terms of Besov spaces B,'*°. Recall that f belongs to B;* if its wavelet
coefficients satisfy

(4.21) sup 2(sp= i Z lexlf < C;
j -
|A|=2-7

using this definition for p < 0 is clearly absurd; indeed the quantity (4.21) is
totally unstable for p < 0 because one wavelet coefficient can take an arbitrarily
small value ‘accidentally’. This explains why (to our knowledge) mathematical
extensions of Besov spaces to negative values of p have never been proposed. One
way to eliminate this source of instability is to replace in (4.21) the single value
|ex] by a supremum of the |cy:/| where A is close to A. This is consistent with the
purpose of deriving spectra of singularities; indeed, a very small wavelet coefficient
is not the signature of a large Holder exponent if it has a large coefficient in its
immediate vicinity. On the contrary, a small value of the supremum means that,
indeed, a whole set of wavelet coefficients close to each other takes small values,
which is the signature of a smooth zone. Therefore, the idea of taking suprema is
a sensible way to ‘renormalize’ the divergence of (4.21) by disregarding the wavelet
coefficients which are small ‘by accident’ (which means here that there is a large
wavelet coefficient in the neighbourhood). This is the starting point of the use
of the Wavelet Mazima Method in this context, see [7, 80, 97]: The pointwise
value of the continuous wavelet transform is replaced by a supremum on all lines
of maxima ending at the point considered. The wavelet maxima method may be
mathematically unstable, see [50]; however, we note that, in the discrete setting
supplied by orthonormal wavelet bases, it would amount to replacing in (4.21) the
coeflicient ¢y by dx = supy, -, |ear], hence to replacing Besov spaces by oscillation
spaces in the definition of the scaling function. Therefore, it is not surprising that,
though a scaling function based on Besov spaces has no natural extension for p < 0,
a scaling function based on oscillation spaces has a natural and robust extension.

The idea of proving that a criterion does not depend on a particular wavelet
basis by proving the invariance of this criterion under the application of an element
of M"Y was introduced by Y. Meyer in [87]. The notion of robustness was introduced
in [56, 57] where it is systematically used as a tool to determine the largest possible
information that can be derived from wavelet coefficients and is independent of the
wavelet basis.
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5. Prevalent results in multifractal analysis

Many results of multifractality have been obtained for specific functions or
random processes. In order to obtain ‘generic’ results of multifractality, we will
first discuss what is meant by generic.

5.1. Genericity in infinite dimensional spaces. In R? two notions of
genericity are widely used: The notion of Lebesgue almost everywhere, and Baire’s
notion of quastsure. These two notions share some basic properties which are a
natural requirement for any notion of genericity used in infinite dimensional spaces:

(1) Invariance with respect to dilations and translations,

(2) Stability with respect to countable intersection,

(3) Stability with respect to inclusion (if A is a generic set, A C B = B is
a generic set),

(4) A generic set is dense.

Besides Lebesgue’s and Baire’s notions of genericity, there exists many other
examples in R%; let us mention the one-parameter family defined as follows:

Let 6 € [0,d). A set A is Hausdorff-0 generic if the complement of A has
Hausdorff dimension less than 4.

Let w be a notion of genericity defined on a vector space E (which, to avoid
trivialities, is supposed to be of dimension at least 1); we assume that the four
requirements listed above are fulfilled, and we denote by G, the collection of all
subsets which are generic for w.

The collection of genericities has the structure of a net: w is said to be stronger
than o’ if G, C G, (this means that a set which is generic for w is also generic for
w'). Equipped with this partial ordering, any family of genericities {w},eo has a
supremum: The genericity p defined by

A€q, fAEG, YuweO.

The two strongest notions of genericity clearly are:

e The trivial genericity, where the only generic set is E itself.
e The countable genericity, where the generic sets are the complements of
the countable sets.

The Hausdorff genericities can also be defined on infinite dimensional spaces. In
infinite dimension, another slightly weaker notion is supplied by the compact gener-
tcity: The generic sets are the complements of the countable unions of compact sets.
This notion is clearly weaker than the previous ones, but stronger than Baire gener-
icity, and it is usually too strong to be useful in practice.

In finite dimension, Baire genericity cannot be compared with either Lebesgue
genericity or the Hausdorff genericities for the partial order defined above; indeed,
there exist residual sets in the sense of Baire which have dimension 0; in space
dimension 1, it is the case for instance of the set

A = limsup (B —e 9 b_ e_q) )
pEZ,q>0 \ 4 q

The importance of proving a generic result lies in the fact that it implies a kind
of uniqueness: If a property P is generic, another property @ incompatible with P
cannot be generic too.
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5.2. Prevalence. Lebesgue genericity plays a special role in finite dimension
because the generic sets are obtained as the complements of the measure-zero sets,
for a “canonical” measure which is both o-finite and shift-invariant: The Lebesgue
measure. Therefore, a natural question is to wonder if such a measure also exists in
an infinite dimensional Banach spaces. Unfortunately, the answer is negative: There
does not exist a o-finite translation-invariant measure in any infinite dimensional
normed space. Indeed a ball B of radius 1 contains an infinite number of disjoint
balls of radius 1/4; therefore, if the measure of B is finite, the measures of the
smaller balls, which are all the same, must vanish. (The property of the unit ball
in infinite dimensional that we used is well known; indeed, it is the first step of the
standard proof that it is not compact: One construct an infinite sequence of points
zp, in this ball such that Yn # m, || #, — 2m [|> 1/2.)

However, this remark does not kill any hope for an infinite-dimensional exten-
sion of the notion of translation-invariant “Lebesgue measure zero”; indeed, let us
consider the following characterization of the Lebesgue measure.

LEMMA 7. In R9 a Borel set S has Lebesgue measure zero if and only if there
exists a compactly supported probability measure p such that

(5.1) Ve e R p(z+S) = 0.

The proof of this lemma is straightforward: First, if E has Lebesgue measure
0, one can use for y the Lebesgue measure on the unit cube, which clearly satisfies
(5.1). Conversely, suppose that S is a Borel set, and that (5.1) holds. Then

0= //1(5 —r)de = /meas(S — y)du(y) = p(RYmeas(S)
(recall that meas denotes the Lebesgue measure), so that S has Lebesgue measure 0.

The characterization of the sets of vanishing Lebesgue measure supplied by
Lemma 7 does not refer explicitely to the Lebesgue measure; therefore it can be
turned into a definition in infinite dimension spaces; the sets thus defined are called
Haar-null, and the notion of genericity that it yields is called prevalence. From
now on, we will only use this notion of genericity. The following definition was
introduced by J. Christenssen [26].

DEFINITION 27. Let E be a complete metric space. A Borel set A C E is
Haar-null if there exists a compactly supported probability measure p on E such
that
(5.2) Ve € R4 p(z+ A) =0.

A subset A of F is Haar-null if it is included in a Haar-null Borel set. The
complement of a Haar-null set is called a prevalent set.
If (5.2) holds, the measure y is said to be transverse to A.

Remark: Recall that a probability measure is called tight if Ye > 0 there
exists a compact set K. such that

ﬂ([(e) Z I—e

If £ is a separable complete metric space, every probability measure on E is tight,
see [93]. Tt follows that, if E is separable, we can drop the assumption that g is



50 STEPHANE JAFFARD
compactly supported in Definition 27.

The basic properties of prevalence and several applications are detailed in
[26, 46] and we refer to them for additional information. The following results show
that prevalence indeed supplies a natural generalisation of the notions of Lebesgue-
measure zero and almost everywhere in infinite dimensional complete metric sep-
arable spaces. Furthermore, this proposition implies that prevalence satisfies the
assumptions for genericity that we listed above.

ProposITION 12. (1) If S is Haar-null, V& € F, 2 + S is Haar-null.
(2) Tf A is Haar-null, VA # 0, AA is Haar-null.
(3) If E is finite-dimensional, S is Haar-null <= meas(S) = 0.
(4) A is prevalent = A is dense.
(5) A countable intersection of prevalent sets is a prevalent set.

The first and second points assert that the notion of Haar-null (and therefore
of prevalence) is translation and dilation invariant, which immediately follows from
Definition 27. The third point is just a restatement of Lemma 7. The fourth point
is also straightforward; indeed, we can clearly assume that p has a support included
in a ball of arbitrarily small radius (by considering a finite covering of the support
of u by balls B; of radius € and then correctly renormalizing one of the ylpg, which
has a non-zero mass); therefore, a Haar-null set cannot contain a ball. The stability
by countable intersection is proved in [26, 46]. However, we will give a simple proof
this result in the case where F is separable.

We will say that almost every element of I satisfies a property P if the set
of elements satisfying P is a prevalent set; equivalently, we will say that P holds
almost everywhere in F.

Two techniques for proving that a set is Haar-null are used: the probe tech-
nique, and the stochastic process technique. Let us describe them.

If one uses for transverse measure the Lebesgue measure on the unit ball of a
finite dimensional subset V, Condition (5.2) becomes

Vee E, (z+V)NA isof Lebesgue measure zero.

In this case V is called a probe for the complement of A.
As a simple illustration, let us prove the following result which shows that
prevalence is a weaker notion than compact genericity.

ProrosiTiON 13. If E is an infinite dimensional complete metric space, then
any compact set K is Haar-null.

Proof of Proposition 13: Let f: R x K x K — E be defined by
f(aa L, y) = Oz(l‘ - y)
Let us first check that I'm(f) # E. Indeed,
In(f) = | (=N, N] % K x K)

thus Im(f) is a countable union of compact sets, which are thus closed and of
empty interior; therefore I'm(f) is a set of first category which, by Baire’s theorem,
differs from E. Thus, let v ¢ I'm(f), and let V be the one-dimensional vector space
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generated by v. We will check that Vo € E, (# + V) N K has at most one point.
Indeed, if this intersection contained two distinct points y; and ys, then

A, A0 y1 = Av+x and yo = Aqv + o

so that v = L~ ¥2 € Imf; hence a contradiction follows. Therefore

AL — Ay
meas((z + V)N K) = 0.

Recall that a random variable X taking values in F is, by definition, a measur-
able function X defined on a probablility space (2, F,P) and taking values in F.
Such a random variable defines a probability on £ by the formula (if A is a Borel
set of E:

PA)=PH{weQ: X(w) € A}) =P(X € A).

Using this probability measure in the definition of a Haar-null set, we see that, in
order to prove that a set A € /' is Haar-null, 1t is suffucient to check that

Vf € B P(A+f) =0,

1.e. that
VIeEP(XeA+ f)=0.

Suppose ow that P is a property satisfied by some elements of F| and that F is
a space of functions defined on R? (in that case, X is called a stochastic process
if d = 1 and a random field if d > 2). In order to prove that the set of functions
satisfying P is Haar-null, it is sufficient to exhibit a stochastic process X such that

VfeFE, as f+ X doesnot satisfy P.

We will refer to this way of proving that a set is Haar-null as the stochastic process
technique.

As an example of application, let us check which regularity results can be ob-
tained using for transverse measure the Wiener measure on the space of continuous
functions. The stochastic process X associated with the Wiener measure by the
argument described above is the Brownian motion B. It is easy to check that, for
every continuous function f, then

Ve>0, a.s. f+B, isnowhere C'/2%€

Applying the line of argument developed above, it follows that Yo > 1/2, for
almost every f € C([0,1]), f is nowhere C'/?+¢. The use of the Wiener measure
cannot yield a better result; however, if instead of the Brownian motion, one uses
a fractional Brownian motion B? with 0 < 8 < 1/2, one can show that, for every
continuous f, then

Ye>0, a.s. f+ B’ isnowhere CPTe.

This yields an alternative proof of the following result of B. Hunt concerning the
prevalent Holder regularity of functions in €%, see [45]:

ProposITION 14. If s > 0, almost every function in C*(zq) satisfies

Vo € R hi(z) = s.
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Let us now prove the stability of prevalent sets by countable intersection in the
case where the space F is separable. Of course, it suffices to prove the stability of
Haar-null sets by countable union. Let (Ay)nen be a collection of Haar-null sets.
To each of them is associated a random variable X,, defined on a probability space
Q,,, taking values in F, and such that

(5.3) VFEE as. f+Xn¢ An.

Let = 1,2, 2, endowed with the product measure (which amounts to consider
independent copies of the random variables X,,). Since, almost surely, X, € E,
there exist F, C Q, and N(n) such that

VQ e P, P(dist(X,,0) > N(n)) < %
Let Y =3 cx WX”' By the Borel-Cantelli lemma, this series converges
almost surely in F. Let now F' € E and m € N be given. Then
1
(m + N(m))?

1
X, where g, = f+ Z —X,.

fry=omt CESIOIE

n#m
But g, belongs to E; since (5.3) holds for WX’” instead of X,,,, applying
(5.3) to f+Y, we obtain that, for almost every w € []| Qn, [+Y ¢ A,,. Thus,
on the product space Q = Qpr x Hn¢m Qn,

VfeFE, Ym¢gN, a. s [f4+Y¢gA,,

which means that the union of the A,, is a Haar-null set.

n#m

We will prove the following result, which describes the prevalent Holder regu-
larity of functions of O; when s > d/p (which coincides which the space B> in
this case).

THEOREM 7. Let s > d/p; then

e the Holder exponent of almost every function f of the space O takes
values in [s — d/p, s] and

(5.4) VH € [s—d/p,s], d¢(H)=Hp—sp+d,

furthermore, for almost every z, hy(x) = s;
o let 2o be an arbitrary given point in R? then, for almost every function

in Oy, hy(xo) =s—d/p.

The 1dea of the proof of Theorem 7 is to find appropriate probes for Oscillation
spaces. We will explicitly construct bases of these probes by defining their wavelet
coefficients.

5.3. The prevalent spectrum. In this section, we prove the first point of
Theorem 7. Thanks to the Sobolev embeddings, if s — d/p > 0, functions in 0,
cannot have Holder exponents less than s — d/p.

Let [ € N and M = 2%, We will construct an M-dimensional probe in 0,. The
M generators of this space are defined by their wavelet coefficients. Let j > 1 and
ke{0,..,29 —1}; K and J < j are defined by

k K

5 =37 where K € 7% —27°.
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Each dyadic cube A is now split into M subcubes with side 277!, For each index
i €{l,..., M} we choose a different subcube i(\). Let

1
(5.5) a= o

The probe is spanned by M functions g; with the following wavelet coefficients

VA, di, = jmaolmeigTd
(5.6) » diy ‘2
dy, =0 if X is not of the form i(A).

Since O, coincides with the Besov spaces B> (because s — % > 0), it follows that
the functions {g; }i={1,... s} belong to 0;.

Let a > 1; a point zg € R? is said to be a-approximable (by dyadics) if there
exists a sequence (J,,, K,,) € N¥ x Z4 such that
Ky
27

1

(5.7) S

rog —

(clearly, we can assume that K, € Z¢— 2Z9).

LEMMA 8. If z( is a-approximable, then there exists a sequence (dé,k) in the

cone of influence of width 2¢ above zo such that

(5.9) Vi |diy] > e(M)jmo2
: _ _ d d

with H(= H(a)) = s — St

Proof: Suppose that zy is a-approximable and let A be the dyadic cube such
that Zﬁj— = &2 and j = [aJy] (where J, and K, are given by (5.7)). The wavelet

27n

coefficient indexed by i(A) has size

dijyy = §7 0257275 > (M) e2lE g

Let f be an arbitrary function in O, with wavelet coeflicients c,. Consider the
affine subspace of dimension M composed of the functions

M . .
fa=1+>_ B4,
i=1

where 8 = (8%, ..., 8M). Let zqg € R%and v > 0. If f3 is (C,v) smooth at zq then,
inside the cone of width 2! above zg,

M . .
o+ Al
i=1

Denote by E% the set of points g such that

(5.9) < Ce(M)27V,

k
l‘o—g

1

dk - < 57

(Note that z¢ is a-approximable if zo € £ = limsup E7').

j—o0



54 STEPHANE JAFFARD

The set E7* 1s the union of 249 cubes of width 2 - 272/, Suppose that 2 and y
are two points in the same cube and suppose furthermore that fz is (C, ) smooth
at z and fj is (C,5) smooth at y. Then |z —y| <2 27 and Vi=1,.... M

M
Ci(a') + Zﬁldz(Al) < CC(M)Q_’Y]
i=1
(5.10)

M
Ci(a') + Zﬁldz(Al) < CC(M)Q_WjI
i=1

for any dyadic cubes A’ at scale j' inside the cone of width 2 above z and y. But,
since |r —y| < 2-27% we can find such a )’ satisfying j' = [aj]. Using Lemma 8
and (5.8) it follows from (5.10) that
16 = Bl < 20e(M)2= O (1) (= A7)
(where ||8]| = sup |Bi]). Therefore the set of 8 satisfying
; M

i=1,...,

Jz € B} such that fs is (C, a) smooth at x

is included in the union of 2% balls with radii A(j’). It follows that the Lebesgue
measure of the M-uples 7 satisfying

Jdz € EY such that f3 is (C, ) smooth at x
is bounded by

(5.11) i(cc(M)[aj]a)Mz—W—H)M[aﬂzdj
j=J

(where J can be chosen arbitrary large); we can choose M large enough so that
d—(y— H)Ma < 0; thus, when J tends to oo, (5.11) goes to 0, so that it vanishes.
Therefore, the set of M-uples 3 = (81, ..., Bar) such that f+>" 8¢’ is (C, ) smooth
at a point in F* has measure zero. Since it 1s true for all C' > 0, the set of 3 such
that

e €EY: [+ By isC?
also has measure zero. Therefore
Va>1, Vy> H(a), as. inO;, VYreE” hi(z) <7y
Taking v, — H(«) (with v, > H(«)) it follows by countable intersection, that
(5.12) Va >0, as. VeeE® hi(x) < H(a).

Therefore, if v, is a dense sequence in (1, 00), using the same argument, one obtains
that

as. in O, Vn, Vo € B, hy(x) < H(ap) (P).
Let f be a function such that (P) holds. Let a be fixed and a,,) a subsequence
of ay, such that ay(,) is non decreasing and tends to a. The subsets E%#(= are

decreasing and their intersection (:= EO‘) contains E®. Therefore any 2 € E©
satisfles hy(z) < H(«) and thus

(5.13) Ve € B%, hy(x) < H(a).
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But (see [52]) there exists a measure m, supported on E® such that any set F
of dimension less than d/o satisfies mq(F) = 0, and mq(F®) > 0. Moreover, if

Gg ={z: hs(xr) < H}, then
(5.14) VfeO, dimyg(Gyg)< Hp—sp+d.

In particular, if F,, denotes the set of points where hy (2) < H(«), Fy can be written
as a countable union of sets with dimension less than d/« (it is the case because
H(a)=s— % + %, so that g = pH (o) — sp+d). Tt follows that mq(F,) = 0 and
mq(E* — F¥) = 0; but E% — F* is a set of point where the Holder exponent is
exactly H(«). Thus

d
VH € [5— —,5] de(H)=Hp—sp+d,
P

and (5.4) holds on a a prevalent set.
Moreover E' = [0, 1]%, so that we can take m; equal to the Lebesgue measure,

and (5.13) yields, if & = 1,

(5.15) as. Vrel[0,1]% hs(z) <s.

Furthermore, as before, almost every function f of O satisfies
meas({z: he(z) < s})=0;

so that

(5.16) a.s. for almost every z in [0, 1]¢ hi(z) = s.

Results (5.15) and (5.16) are not specific to the unit cube, but they also hold for any
cube. By countable intersection, it follows that, almost surely, Vo € R¢, he(z) <s
and, almost surely, a.e., hy(x) = s. Therefore the first point of Theorem 7 holds.

5.4. Regularity at a fixed point. In order to prove the second point of
Theorem 7, we will use the following regularity condition, which is a slight variant
of the usual pointwise Holder condition:
fis C'(Ol‘og)_l(xo) if there exists C' > 0, § > 0 and a polynomial P of degree at
most [a] such that

) |z — ap|™

f — <46 — P(x — < (/77—

if |z —=zo] <4, |f(x) (z — zg)] _Clog(1/|x—xo|)
A straightforward adaptation of the proof of the the direct part of Theorem 1 shows

that, if f € C'(Ol‘og)_1 (zg), then there exists C' > 0 such that

27
(5.17) Vi > 2, di(xo) < C—.
J
Let 5 = s—d/p; we define a function g by its wavelet coefficients d; i, as follows:
For each j, only one d; does not vanish, and the corresponding k; is such that
|29z — kj| < 2, in which case

djr; = 2777

Clearly, g € O,. The probe used is the one-dimensional subspace spanned by
g. Let f be an arbitrary function in O;. Let us assume that there exist A; and
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Az such that f+ Ajg and f 4+ Aag both belong to Cgog)_l(l‘o)~ Using (5.17), the

wavelet coefficients of f 4+ A1g and of f 4+ Aag inside the cone |27z — k| < 2 satisfy
-8i
lej ik + Ardji] < c2—

;983

|¢j k& Aadj | < /5=

In particular
, 9—0j
|Ar = Aalldj ;| < (e + ) i

It follows that ¥n > 0, [A;1 — As| < 1/7 so that Ay = As. Thus, each line f + Ag has
at most one A such that f 4+ Ag belongs to Cgog)—l (zg). Hence, the second point of
Theorem 7 holds.

5.5. Notes. The notion of Haar-null sets was introduced as early as 1972 by
J. Christenssen in [26]; however this very promising notion did not receive the full
attention 1t deserved untill it was reintroduced in 1992 by B. Hunt, T. Sauer and J.
Yorke, see [46]. Several alternative notions of genericity have been introduced since
then, see for instance [68] and the references mentioned there. The results exposed
in this section are part of a joint work with Aurelia Fraysse, see [36]. Up to now it
was commonly believed among mathematicians and physicists that multifractality
was the signature of very peculiar properties of the function considered (such as
self-similarity for instance); therefore Theorem 7 reverses the common point of view
in this field. The reader should pay special attention to the position of “almost
every” in the statements of Theorem 7; indeed Fubini’s theorem does not apply
in prevalence: If one considers a “generic” function in O3, its Holder exponent is
almost everywhere s, but when a point z 1s fixed, the regularity at zy of almost
every function f will be as bad as possible, i.e. s —d/p. Note that, in the previous
case, this exponent was the one taken the most exceptionally (on a set of dimension
zero). The first and second points of Theorem 7 coincide with the Baire-type results
of [55]. However, here is an example where prevalent and quasi-sure results differ:
Let p < o0;in Oy,

e almost every function satisfies almost everywhere h(z) = s,
e quasi every function satisfies quasi everywhere hy(z) = s — d/p,

which follows immediately from juxtaposing the results of Theorem 7 with the
corresponding results for Baire genericity in [55]. We saw in Section 3.2 that, for
every function of Oy,

de(H)< Hp—sp+d.
Therefore, Theorem 7 shows that a ‘generic’ function in O is as irregular as pos-
sible.

We obtained a generic result of multifractality in a fixed oscillation space, and
when s > d/p. Tt is interesting to notice that the information supplied by the
scaling function for p > 0 can be rewritten as stating that f does indeed belong to
an intersection of oscillation spaces. Indeed, it follows from Definition 15 that, if
p > 0, the scaling function can be given the following interpretation: for a given p,
if wy(p) = w, then

Ve>0, feO¥P™" and f¢ ovPte,

p,loc p,loc
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Conversely, if w(p) is a scaling function, let us define the function space O“ by

(5.18) 0¥ = BY™ N ( N 0;;’75{;1/”‘6) .

p, >0

The space Oy is clearly a Banach space if p > 1; it is a complete metric space if
0 < p < 1 for the metric defined by (3.11). Because of the concavity of w, the
intersection in (5.18) can be written as a countable intersection; therefore 0% is a
complete metric vector space. It would be interesting to determine if there is also
a generic result of multifractality in 0%, and if the multifractal formalism holds in
this space.

The reader should note that prevalent results cannot be obtained in the spaces
O, when p is negative because, in this case, it is no more a vector space; this is
clear if one adopts for O the definition supplied by Definition 22, since we noticed
that the function 0 does not satisfy this definition. One could however pick the
following alternative definition when p is negative: f € O; if f € BY%* and if

1/p
(5.19)  VYe>03C(e), J(e): Vj> J(e), (Z 2<sp—d+ﬁ>f'd§) < C(e).

This definition is pertinent only if s > 0; indeed, if f € BL> d) < C, so that

1/p
(Z Q(SP—d+€)jd§) < Cols+elp)i
k

which 1s therefore bounded if s < 0. This condition coincides with Definition 22
when p 1s positive, and therefore also supplies a natural extension of oscillation
spaces when p is negative. This time, the function 0 belongs to the space, and this
condition clearly defines a cone; however, it is not a convex cone (and, a fortiori, not
a vector space). Indeed, let us assume that s > 0 and let & be such that 0 < a < s.
In the periodic one-dimensional setting, we define f; by its wavelet coefficients as

G =0 i 0<k<l
=27% if <<

df b

and f; by i =27 if OSQEJ'S%
—0 if 3<F<l

The functions f; and f; have vanishing d) as soon as j > 2, and therefore belong
to all spaces O for p <0, but fi + f» does not belong to O} since a < s.

Even if no prevalent result could make sense in this setting, one could wonder
if there can be a generic result in some other sense; we will check that it is not
the case for any of the notions we considered; indeed all these notions are based,
at least, on the use of a topology on the space considered; and we will show that
(5.19) (put together with the condition f € B%>) does not allow to define a finer
topology than the topology of B%. Indeed, any given neighbourhood of 0 for this
finer topology would contain a set of the form B, N E,, where B, denotes the ball
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centered at 0 in BL™, i.e. is the set of functions satisfying VA, dy < ¢ and E,
denotes the set of functions satisfying
1/p

vi>2 Y 2ridh <7
k

(here, we assume again that we are in the periodic, one-dimensional setting). Let
V' be an open neighbourhood of 0 for this finer topology. Let

B .k 1
Br:{fEBr such that ¢; ;=0 if 2_]>§}

Clearly, Bl/n C Bin N Eg so that it is included in V for n large enough, and, since

V 1s open, there exist ¢ and n’ such that, for any n large enough, Bl/n + B N Ly
will be included in V and will contain 0. Let

z .k 1
Br:{fEBr such that ¢; ;=0 if 2_]§§}

For the same reasons, for m large enough, Bl/m is included in Be N Ey/; therefore,
for n and m large enough, Bl/n +Bl/m C V. But, clearly, B/, = Bl/n —|—Bl/n (by
splitting any function f as the sum of a function whose wavelet coefficients vanish

for 2%— > % and a function whose wavelet coefficients vanish for Zﬁj— < %) Thus, for

n large enough B/, is included in V. Therefore, the finer topology actually is not
stronger than the B%> topology.
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